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Page Rank example (Notes Ex. 7.4)
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Page Rank example
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Page Rank example – Final Google matrix

For – = 0.85, we have:
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The sum of each column is 7



PageRank So Far

Introduced the simple “random surfer” model for ranking web pages

Began describing the random surfing process with a “Google matrix” of
transition probabilities.

Next up:

Look at properties of the matrix M .

Explore how it’s used in the “actual” PageRank algorithm

Review eigenvalues/vectors
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Example Review

Construct the google matrix M = –
1

P + 1
R

edT
2

+ (1 ≠ –) 1
R

eeT for the small

web shown here, using – = 1
2 , and R = 6 pages.
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Solution

Leili Rafiee Sevyeri (CS370) Module 5: NLA Winter 2024 4 / 28

G
1 0

1 0 0

0 0 1 0

y
0 0 114 0 0 114

P 0 0 114 0 0

0 0 0 0

8 18 64 0



d I 0 0 I 003
e l l l l l l

R 6 α 112

M α P ed Cl a feet
Piped

4 116

0 114 116 0 0

116 0 116 0 114
116 112 114 116 112 114

1
T T

1 greet s

it
i e everywhere

16
412 5124 1 6 112 5124

1112 5 24 412 1112

1112 1112
I 1112 5 24

113 5124 3 5124
1 12 5 24

116 5724 116 113 1112
observe that column sum to 1 individually



Some Useful Properties of M

The entries of M satisfy 0 Æ Mij Æ 1.

Each column of M sums to 1.
Rÿ

i=1
Mij = 1

Interpretation: if we are on a webpage, probability of being on some
webpage after a transition is 1. (i.e., we can’t just disappear).
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Markov Transition Matrices

The google matrix M is an example of a Markov matrix.

We define a Markov matrix Q by the two properties we just saw:

0 Æ Qij Æ 1

and
Rÿ

i=1
Qij = 1
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Probability Vector

Now, define a probability vector as a vector q such that

0 Æ qi Æ 1

and
Rÿ

i=1
qi = 1

If the “surfer” starts at a random page with equal probabilities, this can be
represented by a probability vector, where pi = 1

R
.
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If a surfer starts at page 7
then the

corresponding probability vector is 1 0,0 0



Evolving The Probability Vector

Now we have:

the probability vector describing the initial state, p0.

a Markov matrix M describing the transition probabilities among
pages.

Their product Mp0 tells us the probabilities of our surfer being at each page
after one transition.

p1 = Mp0

Likewise, for any step n, next step probabilities are, pn+1 = Mpn.
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superscript on P indicates

number of transitions taken

I



Evolving The Probability Vector: Example #1

p0 = [1, 0, 0, 0]T . (We’re definitely starting on page 1.)

If we had a google/transition matrix M =

S

WWU

1/3 0 0 1/2
0 1/2 0 0

1/3 1/2 0 0
1/3 0 1 1/2

T

XXV

Then after one step, what is p1 = Mp0? And what does it mean?

p1 =
C

1
3 , 0,

1
3 ,

1
3

DT

Approximately 33% chance of being at page 1, 3, or 4 after one step, starting
from page 1.
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Evolving The Probability Vector: Example #2

p0 =
C

1
2 , 0,

1
2 , 0

DT

. (We’re on page 1 or 3 with probability 0.5 each.)

If we have same matrix M =

S

WWU

1/3 0 0 1/2
0 1/2 0 0

1/3 1/2 0 0
1/3 0 1 1/2

T

XXV,

then after one step, what is p1?
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Preserving a Probability Vector

If pn is a probability vector, is pn+1 = Mpn also a probability vector?

(ie. Do we have: 0 Æ pn+1
i Æ 1 and

ÿ

i

pn+1
i = 1 ?)

Yes! First, why non-negative?

We have pn+1
i Ø 0, since it is just sums & products of probabilities Ø 0.
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Preserving a Probability Vector

We can also show
ÿ

i

pn+1
i = 1, as follows:

ÿ

i

pn+1
i =

ÿ

i

ÿ

j

Mijpn
j =

ÿ

j

1
pn

j

ÿ

i

Mij

2
=

ÿ

j

pn
j = 1

To be a probability vector, also need pn+1
i Æ 1? Why is this true?
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Page Rank idea

Finally, Page Rank asks:

With what probability does our surfer end up at each page after many
steps, starting from p0 = 1

R
e?

i.e., What is pŒ = lim
kæŒ

(M)kp0?

Higher probability in pŒ
vector implies greater importance.

Then we can rank the pages by this importance measure.
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After k steps we are in

M.ir MP9 MUpostal

Exponent not step index



Page Rank algorithm summary

1 Given a graph of a network, compute a corresponding Google transition
(Markov) matrix...

M = –

A
P + 1

R
edT

B
+ (1 ≠ –) 1

R
eeT

2 Repeatedly evolve a probability vector pi via pn+1 = Mpn towards a
steady state, approximating a “random surfer”.

3 The site with the highest probability of being visited is considered most
important/influential.
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Page Rank Example - Results

Starting from p0 = 1
R

e, repeated multiplication by M gives a sequence of
probability vectors, eventually settling down.

For earlier example, the pages are ranked as: 4, 6, 5, 2, 3, 1 based on these final
probabilities.
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Questions to Ponder...

Do we actually know if it will settle (converge) to a fixed final result?

If yes, then how long will it take? Roughly how many iterations are
needed before we can stop?

Can we implement this e�ciently (e.g. for very large networks?)
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Making Page Rank E�cient

A näıve implementation of Page Rank involves repeatedly multiplying massive
matrices with dimensions > 1billion ◊ 1billion.

How can we apply/implement this in a way that is computationally feasible?

We’ll exploit (1) precomputation and (2) sparsity.
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First step: Precomputation

The ranking vector pŒ can
be precomputed once and
stored, independent of any
specific query. To later

search for a keyword, e.g.,
“pizza pajamas”, Google
finds only the subset of
pages matching the
keyword(s), and ranks
those by their values in the
(precomputed) pŒ.
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Second Step: Sparsity

In numerical linear algebra, we often
deal with two kinds of matrices.

Dense: Most or all entries are
non-zero. Store in an N ◊ N array,
manipulate “normally”.

Sparse: Most entries are zero. Use a
“sparse” data structure to save space
(and time). Prefer algorithms that
avoid “destroying” sparsity (i.e., filling
in zero entries).
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Sparse Matrix-Vector multiplication

Multiplying a sparse matrix with a vector can be done e�ciently!

Only non-zero matrix entries are ever accessed/used.
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6 5 multiplication
7 a

note that the little squares are representing zeros here



Second Step: Exploiting Sparsity

To implement Page Rank e�ciently, it is crucial to exploit sparsity.

Sadly, our google matrix M was fully dense. No zeros at all!

A dense matrix-vector multiply with 1, 000, 000, 0002 entries is
slooooooooooooooooO00O...O00OOooooOO000OOOooooow.

The trick: Use linear algebra manipulations to perform the main iteration

pn+1 = Mpn

without ever creating/storing M !
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Exploiting Sparsity in M
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31 involve eetp e etp which requires the

dot product etp

This is just 1

End of Lecture 1 computation is not done

yet



Algorithm

Given this e�cient/sparse iteration, loop until the max change in probability
vector per step is small (< tol) – easy!
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Google Search: Other Factors

Page Rank can be “tweaked” to incorporate other (commercial?) factors.

Replace standard teleportation 1 ≠ –

R
eeT with (1 ≠ –)‹eT , where a special

probability vector ‹ places extra weight on whatever sites you like.

In modern search engines, many factors besides pure link-based ranking can
come into play.

(Hence, Search Engine Optimization (SEO) is a lucrative business.)
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Convergence of Page Rank

Remaining questions:

How can we be sure that Page Rank will ever “settle down” to a fixed
probability vector?

If it does, how many iterations will it take?

We will need some additional facts about Markov matrices, involving
eigenvalues and eigenvectors.
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Review: Eigenvalues and Eigenvectors

Recall from linear algebra:

An eigenvalue ⁄ and corresponding eigenvector x of a matrix Q are a scalar
and non-zero vector, respectively, which satisfy

Qx = ⁄x.
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Review: Eigenvalues and Eigenvectors

Equivalently, this can be written

Qx = ⁄Ix

where I is the identity matrix.

Rearranging gives

(⁄I ≠ Q)x = 0

which implies that the matrix ⁄I ≠ Q must be singular for ⁄ and x to be an
eigenvalue/eigenvector pair, since we want x ”= 0.
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Quick Review: Eigenvalues and Eigenvectors

A singular matrix A satisfies det A = 0.

Thus to find the eigenvalues ⁄ of Q, we can solve the characteristic
polynomial given by

det(⁄I ≠ Q) = 0

Example

Find the eigenvalues/eigenvectors of
5
2 2
5 ≠1

6
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