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Second Step: Exploiting Sparsity

To implement Page Rank e�ciently, it is crucial to exploit sparsity.

Sadly, our google matrix M was fully dense. No zeros at all!

A dense matrix-vector multiply with 1, 000, 000, 0002 entries is
slooooooooooooooooO00O...O00OOooooOO000OOOooooow.

The trick: Use linear algebra manipulations to perform the main iteration

pn+1 = Mpn

without ever creating/storing M !
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Exploiting Sparsity in M
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Algorithm

Given this e�cient/sparse iteration, loop until the max change in probability
vector per step is small (< tol) – easy!
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Google Search: Other Factors

Page Rank can be “tweaked” to incorporate other (commercial?) factors.

Replace standard teleportation 1 ≠ –

R
eeT with (1 ≠ –)‹eT , where a special

probability vector ‹ places extra weight on whatever sites you like.

In modern search engines, many factors besides pure link-based ranking can
come into play.

(Hence, Search Engine Optimization (SEO) is a lucrative business.)
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Convergence of Page Rank

Remaining questions:

How can we be sure that Page Rank will ever “settle down” to a fixed
probability vector?

If it does, how many iterations will it take?

We will need some additional facts about Markov matrices, involving
eigenvalues and eigenvectors.

Leili Rafiee Sevyeri (CS370) Module 5: NLA Winter 2024 25 / 28



Review: Eigenvalues and Eigenvectors

Recall from linear algebra:

An eigenvalue ⁄ and corresponding eigenvector x of a matrix Q are a scalar
and non-zero vector, respectively, which satisfy

Qx = ⁄x.
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Review: Eigenvalues and Eigenvectors

Equivalently, this can be written

Qx = ⁄Ix

where I is the identity matrix.

Rearranging gives

(⁄I ≠ Q)x = 0

which implies that the matrix ⁄I ≠ Q must be singular for ⁄ and x to be an
eigenvalue/eigenvector pair, since we want x ”= 0.
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Quick Review: Eigenvalues and Eigenvectors

A singular matrix A satisfies det A = 0.

Thus to find the eigenvalues ⁄ of Q, we can solve the characteristic
polynomial given by

det(⁄I ≠ Q) = 0

Example

Find the eigenvalues/eigenvectors of
5
2 2
5 ≠1

6
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Solution To find eigenvalues we solve det XI 2

detchI Q detf
2 2

X X 12 0
5 1

factors as X 4 3 0 so root are

1 4 X2 3

To find corresponding eigenvectors plug it
back in

AN XN So

13 11 11
1st row say 291 292 49 91 92
Second row tells the same thing

Therefore any
vector w̅ C for arbitrary

non Zero scalar C is an eigenvector for X 4

Likewise for 12 3 we get 42 62
which is the other eigenvalue



Review: Eigenvalues and Eigenvectors

Note: In the general case, the eigenvalues are not necessarily always real.

e.g., the two eigenvalues of
5
2 ≠1
1 5

6
are 2 ± i.
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Why eigen-stu� again?

The Page Rank process is actually converging
towards a specific eigenvector of the Markov
matrix, M .

With the earlier example 10 iterations gave:

[0.05205, 0.07428, 0.05782, 0.34797, 0.19975, 0.26810]T

The eigenvector of M corresponding to an eigenvalue of 1 is (approximately):

[0.05170, 0.07367, 0.05741, 0.34870, 0.19990, 0.26859]T
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Convergence of Page Rank

To show that Page Rank converges we first need a few more properties &
definitions involving Markov matrices...

1 Every Markov matrix Q has 1 as an eigenvalue (Th’m 7.5).

2 Every eigenvalue of a Markov matrix Q satisfies
--⁄

-- Æ 1. So 1 is its largest
eigenvalue (Th’m 7.6).

3 A Markov matrix Q is a positive Markov matrix if Qij > 0 ’i, j (Def’n
7.7).

4 If Q is a positive Markov matrix, then there is only one linearly
independent eigenvector of Q with

--⁄
-- = 1 (Th’m 7.8).
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1. Every Markov matrix Q has 1 as an eigenvalue.

Eigenvalues of Q and QT are equal, since det(Q) = det(QT ).

Now, notice that QT e = e; why?

Since the columns of Q sum to 1, so do rows of QT .

For example:

QT e =

S

WWWWWWWWU

1
4

1
8 0

1
2

7
8 0

1
4 0 1

T

XXXXXXXXV

T

S

U
1
1
1

T

V =

S

WWWWWWU

1
4

1
2

1
4

1
8

7
8 0

0 0 1

T

XXXXXXV

S

U
1
1
1

T

V =

S

U
1
1
1

T

V
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1. Every Markov matrix Q has 1 as an eigenvalue.

Since QT e = (1)e, then ⁄ = 1 is therefore an eigenvalue of QT , with
eigenvector e (by def’n).

We already said that the eigenvalues of Q and QT are equal, since
det(Q) = det(QT ). (However, eigenvectors can di�er.)

So 1 is also an eigenvalue of Q.
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Every eigenvalue of a Markov matrix Q satisfies
---⁄

--- Æ 1.
So 1 is its largest eigenvalue. (Th’m 7.6)

We will show that
--⁄

-- Æ 1 for QT (and therefore also for Q).

Let’s work it through...
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Markov Matrices Q Satisfy
---⁄i

--- Æ 1
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Nr X Kr LI Qin Nj
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Items 3. & 4.

3. Definition: A Markov matrix Q is a positive Markov matrix if Qij > 0 ’i, j
(Def’n 7.7).
(This is just a definition, no proof req’d.)

4. If Q is a positive Markov matrix, then there is only one linearly
independent eigenvector of Q with

--⁄
-- = 1 (Th’m 7.8).

(We won’t prove this. See notes for a reference if curious.)

Implication: If Q is positive Markov, then Qx = (1)x for some x.

If also Qy = y, then y = cx for some scalar c. i.e. y is a multiple of x.

Eigenvector with ⁄ = 1 is unique!
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Page Rank Convergence

With all these facts, we can now prove that Page Rank will converge.

Let’s do it!
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Page Rank Convergence
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If M in a positive Markov matrix PageRank

converges
to a unique vector p for initial

probability vector p

Let be the corresponding eigenvector for Xp

for all I Assume we can write p as a linear

combination of eigenvectors Then

p I Cete for scalar Ce

Assure eigenvalues are in sorted order So

12 7 13



Page Rank Convergence
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Theorem 7.8 said that he 41 for e 1 since

it was unique Hence

I 0 for 0 1

p 1in M 7p 49T Other components are
now scaled towards 0

If we start with a different probability vector

9 I bet
we find 9 bÑ
Since 9 and p are probability vectors both sum

to 1 Then

b a.ci a nisi t
ist R

biÉ GEn
bi C

P 9 so PageRank converges to a unique

ventor



Convergence Rate

The number of iterations required for Page Rank to converge to the final
vector pŒ depends on the size of the 2nd largest eigenvalue, |⁄2|.

Can you see why?

pk = (Mk)p0 = c1x1 +
Rÿ

¸=2
c¸(⁄¸)kx1

The 2nd largest eigenvalue dictates the slowest rate at which the “unwanted”
components of p0 are shrinking.
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Convergence Rate

It turns out that for our google matrix, |⁄2| ¥ – (We won’t prove it.)
Recall: – dictated the balance between following real links, and teleporting
randomly.

e.g., if – = 0.85, then |⁄2|114 ¥ |0.85|114 ¥ 10≠8. What does this say?

After 114 iterations, any vector components of p0 not corresponding to the
eigenvalue |⁄1| will be scaled down by about ≥ 10≠8 (or smaller!)

The resulting vector p114 is likely to be a good approximation of the
dominant eigenvector, x1.
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E�ect of –

A small value of |⁄2| ¥ – implies faster convergence.

So speed it up by choosing as small – as possible?

No! – = 0 implies only random teleportation! This ignores the web’s link
structure completely, so the ranking is meaningless (all equal).

Essentially, – trades o� accuracy for e�ciency.
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Numerical Linear Algebra
Gaussian Elimination
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Numerical Linear Algebra

The study of algorithms for performing linear algebra operations
numerically (i.e., approximately, on a computer, with floating point).

Matrix/vector arithmetic

Solving linear systems of equations

Taking norms

Factoring & inverting matrices

Finding eigenvalues/eigenvectors (e.g. PageRank!)

Etc.

Our numerical methods often di�er from familiar exact methods, due to
e�ciency concerns, floating point error, stability, etc.
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Applications

Application areas include:

Fitting polynomials and splines.

Implicit time integration.

Optimization problems.

Machine learning, statistics.

Engineering.

Computational finance.

Computational biology.

Image processing.

Data mining & search.

Computer vision.
Etc.

Nearly everywhere numerical
computation is used, numerical linear
algebra plays some role.
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Solving Linear Systems of Equations

Many many many practical problems rely on solving systems of linear
equations of the form

Ax = b

where A is a matrix, b is a right-hand-side (column) vector, and x is a
(column) vector of unknowns.
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Example: Animating Fluids

Computing one frame of animation
requires solving a linear system with >
one million unknowns.

i.e. matrix A has dimensions
> 1, 000, 000 ◊ 1, 000, 000.

Must be done once per frame;
animations are usually played back at
30 frames / second.

e.g. for 10 seconds of video, must
solve 300 linear systems with size
1, 000, 0002 each.

So: We need methods to solve linear
systems e�ciently and accurately.
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Review: Gaussian Elimination

In your linear algebra class, you would have seen Gaussian Elimination.

This involves:

eliminating variables via row operations, until only one remains.

back-substituting to recover the value of all the other variables.

This was done by applying combinations of:

1 Multiplying a row by a constant.

2 Swapping rows.

3 Adding a multiple of one row to another row.
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Gaussian Elimination: Ax = b

(Some) numerical algorithms use Gaussian elimination, too. But it is
interpreted di�erently...

Our view will be the following:

1 Factor matrix A into A = LU , where L and U are triangular.

2 Solve Lz = b for intermediate vector z.

3 Solve Ux = z for x.
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Gaussian Elimination as Factorization

Solve

S

U
1 1 1
1 ≠2 2
1 2 ≠1

T

V

S

U
x0
x1
x2

T

V =

S

U
0
4
2

T

V for the vector x̨.
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Solution
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