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Second Step: Exploiting Sparsity

To implement Page Rank efficiently, it is crucial to exploit sparsity.
Sadly, our google matrix M was fully dense. No zeros at all!

A dense matrix-vector multiply with 1,000, 000,000° entries is
s100000000000000000000...0000000000000000000000OW.

The trick: Use linear algebra manipulations to perform the main iteration
pn-l—l _ Mpn

without ever creating/storing M!
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Exploiting Sparsity in M
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Algorithm

Given this efficient /sparse iteration, loop until the max change in probability
vector per step is small (< tol) — easy!

Page Rank Algorithm

p’=e/R

For k =1, ..., until converged
p" = Mp*~! (7.7.1)
If max |[p"]; — [P"']i| < tol then quit

EndFor
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Google Search: Other Factors

Page Rank can be “tweaked” to incorporate other (commercial?) factors.

1l — «

Replace standard teleportation ee’ with (1 — a)ve’, where a special

probability vector v places extra weight on whatever sites you like.

In modern search engines, many factors besides pure link-based ranking can
come into play.

(Hence, Search Engine Optimization (SEQO) is a lucrative business.)
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Convergence of Page Rank

Remaining questions:

e How can we be sure that Page Rank will ever “settle down” to a fixed
probability vector?

e If it does, how many iterations will it take?

We will need some additional facts about Markov matrices, involving
eigenvalues and eigenvectors.
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Review: Eigenvalues and Eigenvectors

Recall from linear algebra:

An eigenvalue A and corresponding eigenvector x of a matrix () are a scalar
and non-zero vector, respectively, which satisfy
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Review: Eigenvalues and Eigenvectors

Equivalently, this can be written

Qx = Mx
where [ is the identity matrix.
Rearranging gives
- o
(M —-Q)x=0 A+

which implies that the matrix A\l — ) must be singular for A and x to be an
eigenvalue/eigenvector pair, since we want x £ 0. =——
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Quick Review: Eigenvalues and Eigenvectors

M _Q
PNy - deE CAT_@QD0

A singular matrix A satisfies det A = 0.

O ——

Thus to find the eigenvalues A of (), we can solve the characteristic
polynomial given by

det(A\l — Q) =0

Find the eigenvalues/eigenvectors of E _21]
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Review: Eigenvalues and Eigenvectors

Note: In the general case, the eigenvalues are not necessarily always real.

2 —1

1 5] are 2 + 1.

e.g., the two eigenvalues of [
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Why eigen-stuff again?
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With the earlier example 10 iterations gave:
(O o

M = [0.05205,0.07428,0.05782,0.34797,0.19975, 0.26810] "

=

The eigenvector of M corresponding to an eigenvalue of 1 is (approximately):

Q{(jeMeaJ("‘—-' [0.05170, 0.07367,0.05741, 0.34870, 0.19990, 0.26859]
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Convergence of Page Rank

To show that Page Rank converges we first need a few more properties &
definitions involving Markov matrices...

Q@ Every Markov matrix ) has 1 as an eigenvalue (Th’'m 7.5).

@ Every eigenvalue of a Markov matrix () satisfies ‘)\‘ < 1. So 1 is its largest
eigenvalue (Th’'m 7.6).

@ A Markov matrix () is a positive Markov matrix if @);; > 0 Vi, j (Def’n
7.7).

Q If () is a positive Markov matrix, then there is only one linearly
independent eigenvector of @ with |A| =1 (Th’'m 7.8).
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1. Every Markov matrix () has 1 as an eigenvalue.

Eigenvalues of Q and Q! are equal, since det(Q) = det(Q").

Now, notice that Q' e = e; why? \/
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1. Every Markov matrix () has 1 as an eigenvalue.
Q—r€=€ > Q\T€= <|)€ j >\:l

@le. e Ao

Since Qe = (1)e, then A\ = 1 is therefore an eigenvalue of Q*, with
eigenvector e (by def’n).

We already said that the eigenvalues of Q and Q! are equal, since
det(Q) = det(Q'). (However, eigenvectors can differ.)

So 1 is also an eigenvalue of ().
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Every eigenvalue of a Markov matrix () satisfies ‘)\| < 1.

So 1 is its largest eigenvalue. (Th'm 7.6)

We will show that ‘)\‘ < 1 for Q' (and therefore also for Q).

Let’s work it through...
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[tems 3. & 4.

3. Definition: A Markov matrix @) is a positive Markov matrix if ¢);; > 0 V4, j
(Def’n 7.7).
(This is just a definition, no proof req’d.)

4. If () is a positive Markov matrix, then there is only one linearly
independent eigenvector of () with ‘)\‘ =1 (Th’'m 7.8).
(We won’t prove this. See notes for a reference if curious.)

Implication: If ) is positive Markov, then @x = (1)x for some x. A £O
If also Qy = y, then y = cx for some scalar c. i.e. y is a multiple of x. Q‘j¢0

Eigenvector with A = 1 is unique!
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Page Rank Convergence

With all these facts, we can now prove that Page Rank will converge.

Let’s do it!
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Page Rank Convergence
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Page Rank Convergence
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Convergence Rate

The number of iterations required for Page Rank to converge to the final
vector p>° depends on the size of the 2°¢ largest eigenvalue, |\a|.

Can you see why?
R
p* = (M*)p® = c1x1 + Z ce(Ae)*x1
(=2

The 2"9 largest eigenvalue dictates the slowest rate at which the “unwanted”
components of p° are shrinking.
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Convergence Rate

It turns out that for our google matrix, |As| = a (We won’t prove it.)
Recall: o dictated the balance between following real links, and teleporting
randomly.

e.g., if & = 0.85, then [Ao|'** ~ 0.85|*'* ~ 107®. What does this say?

After 114 iterations, any vector components of p° not corresponding to the
eigenvalue |\;| will be scaled down by about ~ 10™° (or smaller!)

The resulting vector pt'* is likely to be a good approximation of the
dominant eigenvector, Xj.
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A small value of |\2| &~ a implies faster convergence.

So speed it up by choosing as small « as possible?

No! a = 0 implies only random teleportation! This ignores the web’s link
structure completely, so the ranking is meaningless (all equal).

Essentially, o trades oftf accuracy for efficiency.
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Numerical Linear Algebra
(Gaussian Elimination




Numerical Linear Algebra,

The study of algorithms for performing linear algebra operations
numerically (i.e., approximately, on a computer, with floating point).

e Matrix/vector arithmetic

@ Solving linear systems of equations

e Taking norms

e Factoring & inverting matrices

e Finding eigenvalues/eigenvectors (e.g. PageRank!)
o Litc.

Our numerical methods often differ from familiar exact methods, due to
efficiency concerns, floating point error, stability, etc.

Leili Rafiee Sevyeri (CS370) Winter 2024



Applications

Application areas include:

s , . e Computational biology:.
e Fitting polynomials and splines.

L , . @ Image processing.
e Implicit time integration.

L e Data mining & search.
e Optimization problems.

e Computer vision.

@ Machine learning, statistics.
e Etc.

e Engineering. ,
Nearly everywhere numerical

computation is used, numerical linear

e Computational finance.
algebra plays some role.
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Solving Linear Systems of Equations

Many many many practical problems rely on solving systems of linear
equations of the form

Ax =0b

where A is a matrix, b is a right-hand-side (column) vector, and z is a
(column) vector of unknowns.
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Example: Animating Fluids

Computing one frame of animation
requires solving a linear system with >
one million unknowns.

@ i.e. matrix A has dimensions
> 1,000,000 x 1,000, 000.

Must be done once per frame;
animations are usually played back at
30 frames / second.

@ e.g. for 10 seconds of video, must

solve 300 linear systems with size
1,000,000% each.

So: We need methods to solve linear
systems efficiently and accurately.
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Review: Gaussian Elimination

In your linear algebra class, you would have seen Gaussian Elimination.

This involves:
e eliminating variables via row operations, until only one remains.
@ back-substituting to recover the value of all the other variables.
This was done by applying combinations of:
Q@ Multiplying a row by a constant.
© Swapping rows.

@ Adding a multiple of one row to another row.
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Gaussian Elimination: Az = b

(Some) numerical algorithms use Gaussian elimination, too. But it is
interpreted differently...

Our view will be the following:
@ Factor matrix A into A = LU, where L and U are triangular.
@ Solve Lz = b for intermediate vector z.

@ Solve Ux = z for z.
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(zaussian Elimination as Factorization

1 1 1 o 0
Solve |1 —2 2 r1| = (4| for the vector x.
1 2 =11 |x9 2
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Solution
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