
Lecture 21

Our last examples showed the the System-Rank Theorem did indeed use the rank of a
matrix to predict whether or not a system was consistent, and if it was consistent, how
many parameters the solution would have. Of course, we already knew the answers to these
problems as we had previously solved those systems. Here we look at another example of
using the System-Rank Theorem to predict how many solutions a system will have based
on the values of the coe�cients in the system. In this situation, we are not concerned with
what the solutions are, but simply if solutions exist and how many solutions there are.

Example 21.1. For which values of k, ` 2 R does the system

2x1 + 6x2 = 5

4x1 + (k + 15)x2 = `+ 8

have no solutions? A unique solution? Infinitely many solutions?

Solution. Let

A =

"
2 6

4 k + 15

#
and ~b =

"
5

`+ 8

#
.

We carry [A |~b ] to REF.

"
2 6 5

4 k + 15 `+ 8

#
�!

R2�2R1

"
2 6 5

0 k + 3 `� 2

#

If k+3 6= 0, that is if k 6= �3, then rank (A) = 2 = rank
�
[A |~b ]

�
so the system is consistent

with 2� rank (A) = 2� 2 = 0 parameters. Hence we obtain a unique solution. If k + 3 = 0,
that is if k = �3, then we have

"
2 6 5

0 k + 3 `� 2

#
=

"
2 6 5

0 0 `� 2

#

If `�2 6= 0, that is if ` 6= 2, then rank (A) = 1 < 2 = rank
�
[A |~b ]

�
so the system is inconsis-

tent and thus has no solutions. If `�2 = 0, that is if ` = 2, then rank (A) = 1 = rank
�
[A |~b ]

�

so the system is consistent with 2�rank (A) = 2�1 = 1 parameter. Hence we have infinitely
many solutions.

In summary,
Unique Solution : k 6= �3

No Solutions : k = �3 and ` 6= 2

Infinitely Many Solutions : k = �3 and ` = 2
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Definition 21.2. A linear system ofm equations in n variables is underdetermined if n > m,
this is, if it has more variables than equations.

Example 21.3. The linear system of equations

x1 + x2 � x3 + x4 � x5 = 1

x1 � x2 � 3x3 + 2x4 + 2x5 = 7

is underdetermined.

Theorem 21.4. A consistent underdetermined linear system of equations has infinitely many
solutions.

Proof. Consider a consistent underdetermined linear system of m equations in n variables
with augmented matrix [A |~b ]. Since rank (A)  min{m,n} = m, the system will have
n� rank (A) � n�m > 0 parameters and so will have infinitely many solutions.

Definition 21.5. A linear system of m equations in n variables is overdetermined if n < m,
this is, if it has more equations than variables.

Example 21.6. The linear system of equations

�2x1 + x2 = 2

x1 � 3x2 = 4

3x1 + 2x2 = 7

is overdetermined.

Note that overdetermined systems are often inconsistent. Indeed, the system in the previous
example is inconsistent. To see why this is, consider for example, three lines in R2 (so a
system of three equations in two variables like the one in the previous example). When
chosen arbitrarily, it is generally unlikely that all three lines would intersect in a common
point and hence we would generally expect no solutions.

Homogeneous Systems of Linear Equations

We now discuss a particular type of linear system of equations that appears quite frequently.

Definition 21.7. A homogeneous linear equation is a linear equation where the constant
term is zero. A system of homogeneous linear equations is a collection of finitely many
homogeneous equations.

Example 21.8. A homogeneous system of m linear equations in n variables is written as

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = 0
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As this is still a linear system of equations, we use our usual techniques to solve such systems.
However, notice that x1 = x2 = · · · = xn = 0 satisfies each equation in the homogeneous
system, and thus ~0 2 Rn is a solution to this system, called the trivial solution. As every
homogeneous system has a trivial solution, we see immediately that homogeneous linear
systems of equations are always consistent.

Example 21.9. Solve the homogeneous linear system

x1 + x2 + x3 = 0

3x2 � x3 = 0

Solution. We have
"

1 1 1 0

0 3 �1 0

#
�!
1
3R2

"
1 1 1 0

0 1 �1/3 0

#
R1�R2

�!

"
1 0 4/3 0

0 1 �1/3 0

#

so
x1 = �4

3t

x2 = 1
3t, t 2 R

x3 = t

or

2

64
x1

x2

x3

3

75 = t

2

64
�4/3

1/3

1

3

75 , t 2 R.

We make a few remarks about this example:

• Note that taking t = 0 gives the trivial solution. However, as our system was underde-
termined, we have infinitely many solutions. Indeed, the solution set is actually a line
through the origin.

• We can simplify our solution a little bit by eliminating fractions:

2

64
x1

x2

x3

3

75 = t

2

64
�4/3

1/3

1

3

75 =
t

3

2

64
�4

1

3

3

75 = s

2

64
�4

1

3

3

75 , s 2 R

where s = t/3. Hence we can let the parameter “absorb” the factor of 1/3. This is not
necessary, but is useful if one wishes to eliminate fractions.

• When working with homogeneous systems of linear equations, notice that the aug-
mented matrix [A |~0 ] will always have the last column containing all zero entries.
Thus, it is common to row reduce only the coe�cient matrix.

Given a non-homogeneous linear system of equations with augmented matrix [A |~b ] (so
~b 6= ~0), the homogeneous system with augmented matrix [A |~0 ] is called the associated
homogeneous system. The solution to the associated homogeneous system tells us a lot
about the solution of the original non-homogeneous system.
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Example 21.10. If we solve the system

x1 + x2 + x3 = 1

3x2 � x3 = 3

we obtain
"

1 1 1 1

0 3 �1 3

#
�!
1
3R2

"
1 1 1 1

0 1 �1/3 1

#
R1�R2

�!

"
1 0 4/3 0

0 1 �1/3 1

#

so

x1 = �4
3t

x2 = 1 + 1
3t, t 2 R

x3 = t

or

2

64
x1

x2

x3

3

75 =

2

64
0

1

0

3

75+ t

2

64
�4/3

1/3

1

3

75 , t 2 R.

Note that the solution to the associated homogeneous system (from Example 21.9) is

2

64
x1

x2

x3

3

75 = t

2

64
�4/3

1/3

1

3

75 , t 2 R

so we view the homogeneous solution from Example 21.9 as a line, say L0, through the
origin, and the solution from Example 21.10 as a line, say L1, through P (0, 1, 0) parallel

to L0. We refer to
h
0
1
0

i
as a particular solution to the system in Example 21.10 and note

that in general, the solution to a consistent non-homogeneous system of linear equations
is a particular solution plus the solution to the associated homogeneous system of linear
equations.

solution to the system of equationsz }| {2

64
x1

x2

x3

3

75 =

2

64
0

1

0

3

75

| {z }
particular
solution

+ t

2

64
�4/3

1/3

1

3

75

| {z }
associated

homogeneous
solution

, t 2 R

solution to the
associated homogeneous system of equationsz }| {2

64
x1

x2

x3

3

75 = t

2

64
�4/3

1/3

1

3

75 , t 2 R .

Example 21.11. Consider the system of linear equations

x1 + 6x2 � x4 = �1

x3 + 2x4 = 7
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We know from Example 19.4 that the solution is

2

6664

x1

x2

x3

x4

3

7775
=

2

6664

�1

0

7

0

3

7775
+ s

2

6664

�6

1

0

0

3

7775
+ t

2

6664

1

0

�2

1

3

7775
, s, t 2 R,

so the solution to the associated homogeneous system

x1 + 6x2 � x4 = 0

x3 + 2x4 = 0

is 2

6664

x1

x2

x3

x4

3

7775
= s

2

6664

�6

1

0

0

3

7775
+ t

2

6664

1

0

�2

1

3

7775
, s, t 2 R.

which we recognize as a plane through the origin in R4 since the two vectors appearing in
the solution are nonzero and nonparallel.

From Examples 21.9 and 21.11 we saw that our solutions sets were lines and planes through
the origin which we recognize as subspaces. The following theorem shows that the solution
set to any homogeneous system in n variables will indeed be a subspace of Rn.

Theorem 21.12. Let S be the solution set to a homogeneous system of m linear equations
in n variables. Then S is a subspace of Rn.

Proof. Since the system has n variables, S ✓ Rn and since the system is homogeneous, ~0 2 S
so S is nonempty. Now let

~y =

2

64
y1
...

yn

3

75 and ~z =

2

64
z1
...

zn

3

75

be vectors in S. To show that S is closed under vector addition and scalar multiplication, it
is enough to consider one arbitrary equation of the system:

a1x1 + · · ·+ anxn = 0.

Then ~y, ~z 2 S imply that

a1y1 + · · ·+ anyn = 0 = a1z1 + · · ·+ anzn.
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It follows that

a1(y1 + z1) + · · ·+ an(yn + zn) = a1y1 + · · ·+ anyn + a1z1 + · · ·+ anzn = 0 + 0 = 0

so ~y + ~z satisfies any equation of the system and thus ~y + ~z 2 S. For c 2 R,

a1(cy1) + · · ·+ an(cyn) = c(a1y1 + · · ·+ anyn) = c(0) = 0

so c~y 2 S. Hence S is a subspace of Rn.

Note that we call the solution set of a homogeneous system the solution space of the system.

Example 21.13. Solve the homogeneous system of linear equations

4x1 � 2x2 + 3x3 + 5x4 = 0

8x1 � 4x2 + 6x3 + 11x4 = 0

�4x1 + 2x2 � 3x3 � 7x4 = 0

and find a basis for the solution space S. Describe S geometrically.

Solution. As we have a homogeneous system, we carry the coe�cient matrix to RREF.
2

64
4 �2 3 5

8 �4 6 11

�4 2 �3 �7

3

75
�!

R2�2R1

R3+R1

2

64
4 �2 3 5

0 0 0 1

0 0 0 �2

3

75
R1�5R2

�!
R3+2R2

2

64
4 �2 3 0

0 0 0 1

0 0 0 0

3

75

1
4R1

�!

2

64
1 �1/2 3/4 0

0 0 0 1

0 0 0 0

3

75

so

x1 = 1
2s�

3
4t

x2 = s

x3 = t

x4 = 0

, s, t 2 R or

2

6664

x1

x2

x3

x4

3

7775
= s

2

6664

1/2

1

0

0

3

7775
+ t

2

6664

�3/4

0

1

0

3

7775
, s, t 2 R.

Taking

B =

8
>>><

>>>:

2

6664

1/2

1

0

0

3

7775
,

2

6664

�3/4

0

1

0

3

7775

9
>>>=

>>>;
,

we can express the solution set S of our homogeneous system of linear equations as S =
SpanB. As B contains two vectors that are not scalar multiples of one another, we have
that B is a basis for S. We see that S is a plane through the origin in R4.
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Lecture 22

Consider the homogeneous system of linear equations

x1 + x2 + x3 + 4x5 = 0

x4 + 2x5 = 0

The coe�cient matrix "
1 1 1 0 4

0 0 0 1 2

#

is already in reduced row echelon form36 and our solution is

x1 = �t1 � t2 � 4t3
x2 = t1

x3 = t2

x4 = �2t3
x5 = t3

or

2

6666664

x1

x2

x3

x4

x5

3

7777775
= t1

2

6666664

�1

1

0

0

0

3

7777775
+ t2

2

6666664

�1

0

1

0

0

3

7777775
+ t3

2

6666664

�4

0

0

�2

1

3

7777775

with t1, t2, t3 2 R so

B =

8
>>>>>><

>>>>>>:

2

6666664

�1

1

0

0

0

3

7777775
,

2

6666664

�1

0

1

0

0

3

7777775
,

2

6666664

�4

0

0

�2

1

3

7777775

9
>>>>>>=

>>>>>>;

is a spanning set for the solution space S of the system. We check B for linear independence.
Note however that the variables x2, x3 and x5 are free variables. If we consider the second,
third and fifth entries in vectors of our spanning set

B =

8
>>>>>><

>>>>>>:

2

6666664

�1

1

0

0

0

3

7777775
,

2

6666664

�1

0

1

0

0

3

7777775
,

2

6666664

�4

0

0

�2

1

3

7777775

9
>>>>>>=

>>>>>>;

we see that each vector has a 1 where the other two vectors have zeros in that same position.
Thus no vector in B is in the span of the others, and so B is linearly independent by Theorem
14.5. Hence B is a basis for the solution space S.

36Remember that for homogeneous systems of linear equations, we normally row reduce just the coe�cient
matrix.
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Theorem 22.1. Let [A |~b ] be the augmented matrix for a consistent system of m linear
equations in n variables. If rank (A) = k < n, then the general solution of the system is of
the form

~x = ~d+ t1~v1 + · · ·+ tn�k~vn�k

where ~d 2 Rn, t1, . . . , tn�k 2 R and the set {~v1, . . . ,~vn�k} ✓ Rn is linearly independent. In
particular, the solution set is an (n� k)�flat in Rn.

Note that if rank (A) = n in the above theorem, then there are n�n = 0 parameters and so
our solution ~x = ~d is unique.

When solving a homogeneous system of linear equations, we see that the spanning set for
the solution space we find by solving the system is linearly independent. However, given
an arbitrary spanning set B for a subspace of Rn, we cannot assume that B is linearly
independent, and so we must still check. We now show a faster way to do so.
Consider

~v1 =

2

6664

1

1

2

3

3

7775
, ~v2 =

2

6664

2

2

4

6

3

7775
, ~v3 =

2

6664

1

2

3

4

3

7775
and ~v4 =

2

6664

5

7

12

17

3

7775

and let B = {~v1,~v2,~v3,~v4} and S = SpanB. We wish to find a basis B0 for S with B
0 ✓ B.

That is, find a linearly independent subset B0 of B with SpanB0 = S. For c1, c2, c3, c4 2 R,
considering

c1~v1 + c2~v2 + c3~v3 + c4~v4 = ~0

gives a homogeneous system whose coe�cient matrix we carry to RREF:

2

6664

1 2 1 5

1 2 2 7

2 4 3 12

3 6 4 17

3

7775

�!
R2�R1

R3�2R1

R4�3R1

2

6664

1 2 1 5

0 0 1 2

0 0 1 2

0 0 1 2

3

7775

R1�R2

�!
R3�R2

R4�R2

2

6664

1 2 0 3

0 0 1 2

0 0 0 0

0 0 0 0

3

7775

We see that c2 and c4 are free variables so we obtain nontrivial solutions to the system and
hence B is linearly dependent. Our work with bases thus far has shown us that since we can
find solutions with c2 6= 0 and c4 6= 0, we can remove one of ~v2 or ~v4 from B and then test
the resulting smaller set for linear independence. We show here that we can simply remove
both ~v2 and ~v4 and arrive at B0 = {~v1,~v3} as our basis for S immediately.

To begin, note that c1 and c3 were leading variables in the above system. Using our work
above, we see that by considering the homogeneous system

c1~v1 + c3~v3 = ~0
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we obtain 2

6664

1 1

1 2

2 3

3 4

3

7775
!

2

6664

1 0

0 1

0 0

0 0

3

7775

which has only the trivial solution so {~v1,~v3} is linearly indepedent. If we try to write ~v4 as
a linear combination of ~v1,~v2 and ~v3, we obtain the system with augmented matrix

2

6664

1 2 1 5

1 2 2 7

2 4 3 12

3 6 4 17

3

7775
�!

2

6664

1 2 0 3

0 0 1 2

0 0 0 0

0 0 0 0

3

7775

The system is consistent (with infinitely many solutions), so ~v4 2 Span {~v1,~v2,~v3} and so by
Theorem 13.8, Span {~v1,~v2,~v3,~v4} = Span {~v1,~v2,~v3} so we “discard” ~v4. Now, if we try to
express ~v2 as a linear combination of ~v1, we obtain the system with augmented matrix

2

6664

1 2

1 2

2 4

3 6

3

7775
�!

2

6664

1 2

0 0

0 0

0 0

3

7775

which is also consistent (with a unique solution) so ~v2 2 Span {~v1} ✓ Span {~v1,~v3} and we
have that Span {~v1,~v2,~v3} = Span {~v1,~v3} by Theorem 13.8. We will thus “discard” ~v2. In
summary, we’ve shown

S = SpanB = Span {~v1,~v2,~v3,~v4} = Span {~v1,~v2,~v3} = Span {~v1,~v3}

with {~v1,~v3} linearly independent. Hence B
0 = {~v1,~v3} is a basis for S.

Thus, we see that given a spanning set B = {~v1, . . . ,~vk} for a subspace S of Rn, to find a
basis B0 for S with B

0 ✓ B, we construct the matrix [~v1 · · ·~vk ] which we carry to (reduced)
row echelon form. For i = 1, . . . , k, take ~vi 2 B

0 if and only if the ith column of any REF of
our matrix has a leading entry. We also see that for ~vj /2 B

0, ~vj can be expressed as a linear
combination of the vectors in {~v1, . . . ,~vj�1} \ B

0.

Example 22.2. Let

B =

8
><

>:

2

64
1

�1

1

3

75 ,

2

64
1

2

�3

3

75 ,

2

64
1

5

�7

3

75 ,

2

64
3

6

�9

3

75

9
>=

>;
.

Find a basis B0 for SpanB with B
0 ✓ B.
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Solution. We have
2

64
1 1 1 3

�1 2 5 6

1 �3 �7 �9

3

75
�!

R2+R1

R3�R1

2

64
1 1 1 3

0 3 6 9

0 �4 �8 �12

3

75
�!

R3+
4
3R2

2

64
1 1 1 3

0 3 6 9

0 0 0 0

3

75

As only the first two columns of an REF of our matrix contain leading entries, the first two
vectors in B comprise B

0, that is

B
0 =

8
><

>:

2

64
1

�1

1

3

75 ,

2

64
1

2

�3

3

75

9
>=

>;

is a basis for SpanB.

Note that if we had continued to row reduce to RREF, we would have found

2

64
1 1 1 3

�1 2 5 6

1 �3 �7 �9

3

75 �!

2

64
1 0 �1 0

0 1 2 3

0 0 0 0

3

75 . (?)

Note that the third and fourth columns of the RREF do not contain leading ones. We see
that those vectors in B not taken in B

0 satisfy

2

64
1

5

�7

3

75 = �1

2

64
1

�1

1

3

75+ 2

2

64
1

2

�3

3

75 since

2

64
1 1 1

�1 2 5

1 �3 �7

3

75 �!

2

64
1 0 �1

0 1 2

0 0 0

3

75

0

B@
omit 4th

columns from

matrices in (?)

1

CA

2

64
3

6

�9

3

75 = 0

2

64
1

�1

1

3

75+ 3

2

64
1

2

�3

3

75 since

2

64
1 1 3

�1 2 6

1 �3 �9

3

75 �!

2

64
1 0 0

0 1 3

0 0 0

3

75

0

B@
omit 3rd

columns from

matrices in (?)

1

CA

Dimension

Let S be a subspace of Rn and B = {~v1,~v2} be a basis for S. If C = {~w1, ~w2, ~w3} is a set of
vectors in S, then C must be linearly dependent. To see this, note that since B is a basis
for S, Theorem 15.6 gives that there are unique a1, a2, b1, b2, c1, c2 2 R so that

~w1 = a1~v1 + a2~v2, ~w2 = b1~v1 + b2~v2 and ~w3 = c1~v1 + c2~v2.

Now for t1, t2, t3 2 R, consider

~0 = t1 ~w1 + t2 ~w2 + t3 ~w3
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= t1(a1~v1 + a2~v2) + t2(b1~v1 + b2~v2) + t3(c1~v1 + c2~v2)

= (a1t1 + b1t2 + c1t3)~v1 + (a2t1 + b2t2 + c2t3)~v2

Since B = {~v1,~v2} is linearly independent we have,

a1t1 + b1t2 + c1t3 = 0

a2t1 + b2t2 + c2t3 = 0

This is an underdetermined homogeneous system, so it is consistent with nontrivial solutions
and it follows that C = {~w1, ~w2, ~w3} is linearly dependent.

The above generalizes as follows.

Theorem 22.3. Let B = {~v1, . . . ,~vk} be a basis for a subspace S of Rn. If C = {~w1, . . . , ~w`}
is a set in S with ` > k, then C is linearly dependent.

It follows from the statement of the previous theorem that if C is linearly independent, then
`  k. We now state the following important result:

Theorem 22.4. If B = {~v1, . . . ,~vk} and C = {~w1, . . . , ~w`} are both bases for a subspace S
of Rn, then k = `.

Proof. Since B is a basis for S and C is linearly independent, we have that `  k. Since C

is a basis for S and B is linearly independent, k  `. Hence k = `.

Hence, given a nontrivial subspace S of Rn, there are many bases for S, but they will all
contain the same number of vectors. This motivates the following definition.

Definition 22.5. If B = {~v1, . . . ,~vk} is a basis for a subspace S of Rn, then we say the
dimension of S is k, and we write dim(S) = k. If S = {~0}, then dim(S) = 0 since ; is a basis
for S.

Example 22.6. Since the standard basis for Rn is {~e1, . . . ,~en}, we see that dim(Rn) = n.

Example 22.7. We saw in Example 16.8 that the subspace

S =

8
><

>:

2

64
a� b

b� c

c� a

3

75

�������
a, b, c 2 R

9
>=

>;

of R3 had basis

B =

8
><

>:

2

64
1

0

�1

3

75 ,

2

64
�1

1

0

3

75

9
>=

>;

so dim(S) = 2.
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Theorem 22.8. If S is a k�dimensional subspace of Rn with k > 0, then

(1) A set of more than k vectors in S is linearly dependent,

(2) A set of fewer than k vectors in S cannot span S,

(3) A set of exactly k vectors in S spans S if and only if it is linearly independent.

Example 22.9. Let S be a subspace of R3 with dim(S) = 2. Suppose that

~v1 =

2

64
1

1

�2

3

75 and ~v2 =

2

64
1

2

�3

3

75

belong to S. Since ~v1 and ~v2 are nonzero and nonparallel, we have that {~v1,~v2} is a linearly
independent set of two vectors in S. Since dim(S) = 2, we have that S = Span {~v1,~v2} by
Theorem 22.8(3). Thus {~v1,~v2} is a basis for S.

Note that we must know dim(S) before we use Theorem 22.8. In the previous example, we
could not have used the linear independence of {~v1,~v2} to conclude that S = Span {~v1,~v2}
if we weren’t told the dimension of S.
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Lecture 23

We now begin to look at some application of systems of linear equations.

Application: Chemical Reactions

A very simple chemical reaction often learned in high school is the combination of hydrogen
molecules (H2) and oxygen molecules (O2) to produce water (H2O). Symbolically, we write

H2 +O2 �! H2O

The process by which molecules combine to form new molecules is called a chemical reaction.
Note that each hydrogen molecule is composed of two hydrogen atoms, each oxygen molecule
is composed of two oxygen atoms, and that each water molecule is composed of two hydrogen
atoms and one oxygen atom. Our goal is to balance this chemical reaction, that is, compute
how many hydrogen molecules and how many oxygen molecules are needed so that there are
the same number of atoms of each type both before and after the chemical reaction takes
place. By inspection, we find that

2H2 +O2 �! 2H2O

That is, two hydrogen molecules and one oxygen molecule combine to create two water
molecules. Before this chemical reaction takes place, there are four hydrogen atoms and
two oxygen atoms. After the reaction, there are again four hydrogen atoms and two oxygen
atoms. Thus we have balanced the chemical reaction.

Balancing chemical reactions by inspection becomes increasingly di�cult as more complex
molecules are introduced. For example, the chemical reaction photosynthesis is a process
where plants combine carbon dioxide (CO2) and water (H2O) to produce glucose (C6H12O6)
and oxygen (O2):

CO2 +H2O �! C6H12O6 +O2

Although this could be solved by inspection, we look at another method. Let x1 denote
the number of CO2 molecules, x2 the number of H2O molecules, x3 the number of C6H12O6

molecules and x4 the number of O2 molecules. Then we have

x1CO2 + x2H2O �! x3C6H12O6 + x4O2

Equating the number of atoms of each type before and after the reaction gives the equations

C : x1 = 6x3

O : 2x1 + x2 = 6x3 + 2x4

H : 2x2 = 12x3
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Moving all variables to the left in each equation gives the homogeneous system

x1 � 6x3 = 0

2x1 + x2 � 6x3 � 2x4 = 0

2x2 � 12x3 = 0

Row reducing the augmented matrix of this system to RREF gives
2

64
1 0 �6 0 0

2 1 �6 �2 0

0 2 �12 0 0

3

75
�!

R2�2R1

1
2R3

2

64
1 0 �6 0 0

0 1 6 �2 0

0 1 �6 0 0

3

75
�!

R3�R2

2

64
1 0 �6 0 0

0 1 6 �2 0

0 0 �12 2 0

3

75
�!

� 1
2R3

2

64
1 0 �6 0 0

0 1 6 �2 0

0 0 6 �1 0

3

75
R1+R3

R2�R3

�!

2

64
1 0 0 �1 0

0 1 0 �1 0

0 0 6 �1 0

3

75
�!

1
6R3

2

64
1 0 0 �1 0

0 1 0 �1 0

0 0 1 �1/6 0

3

75

We see that for t 2 R,

x1 = t, x2 = t, x3 = t/6 and x4 = t

There are infinitely many solutions to the homogeneous system. However, since we cannot
have a fractional number of molecules, we require that x1, x2, x3 and x4 be nonnegative
integers. This implies that t should be an integer multiple of 6. Moreover, we wish to have
the simplest (or smallest) solution, so we will take t = 6. This gives x1 = x2 = x4 = 6 and
x3 = 1. Thus,

6CO2 + 6H2O �! C6H12O6 + 6O2

balances the chemical reaction.

Example 23.1. The fermentation of sugar is a chemical reaction given by the following
equation:

C6H12O6 �! CO2 + C2H5OH

where C6H12O6 is glucose, CO2 is carbon dioxide and C2H5OH is ethanol37. Balance this
chemical reaction.

Solution. Let x1 denote the number of C6H12O6 molecules, x2 the number of CO2 molecules
and x3 the number of C2H5OH molecules. We obtain

x1C6H12O6 �! x2CO2 + x3C2H5OH

Equating the number of atoms of each type before and after the reaction gives the equations

C : 6x1 = x2 + 2x3

O : 6x1 = 2x2 + x3

H : 12x1 = 6x3

37Ethanol is also denoted by C2H6O and CH3CH2OH
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which leads to the homogeneous system of equations

6x1 � x2 � 2x3 = 0

6x1 � 2x2 � x3 = 0

12x1 � 6x3 = 0

Carrying the augmented matrix of this system to RREF gives

2

64
6 �1 �2 0

6 �2 �1 0

12 0 �6 0

3

75
�!

R2�R1

R3�2R1

2

64
6 �1 �2 0

0 �1 1 0

0 2 �2 0

3

75
R1�R2

�!
R3+2R2

2

64
6 0 �3 0

0 �1 1 0

0 0 0 0

3

75

1
6R1

�R2

�!
2

64
1 0 �1/2 0

0 1 �1 0

0 0 0 0

3

75

Thus, for t 2 R,
x1 = t/2, x2 = t and x3 = t

Taking t = 2 gives the smallest nonnegative integer solution, and we conclude that

C6H12O6 �! 2CO2 + 2C2H5OH

Application: Linear Models

Example 23.2. An industrial city has four heavy industries (denoted by A1, A2, A3, A4)
each of which burns coal to manufacture its products. By law, no industry can burn more
than 45 units of coal per day. Each industry produces the pollutants Pb (lead), SO2 (sulfur
dioxide), and NO2 (nitrogen dioxide) at (di↵erent) daily rates per unit of coal burned and
these are released into the atmosphere. The rates are shown in the following table.

Industry A1 A2 A3 A4

Pb 1 0 1 7

SO2 2 1 2 9

NO2 0 2 2 0

The CAAG (Clean Air Action Group) has just leaked a government report that claims that
on one day last year, 250 units of Pb, 550 units of SO2 and 400 units of NO2 were measured
in the atmosphere. An inspector reported that A3 did not break the law on that day. Which
industry (or industries) broke the law on that day?
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Solution. Let ai denote the number of units of coal burned by Industry Ai, for i = 1, 2, 3, 4.
Using the above table, we account for each of the pollutants on that day.

Pb :

SO2 :

NO2 :

a1 + a3 + 7a4 = 250

2a1 + a2 + 2a3 + 9a4 = 550

2a2 + 2a3 = 400

Carrying the augmented matrix of the above system to RREF, we have

2

64
1 0 1 7 250

2 1 2 9 550

0 2 2 0 400

3

75
�!

R2�2R1

2

64
1 0 1 7 250

0 1 0 �5 50

0 2 2 0 400

3

75
�!

R3�2R2

2

64
1 0 1 7 250

0 1 0 �5 50

0 0 2 10 300

3

75
�!

1
2R3

2

64
1 0 1 7 250

0 1 0 �5 50

0 0 1 5 150

3

75
R1�R3

�!

2

64
1 0 0 2 100

0 1 0 �5 50

0 0 1 5 150

3

75

From this, we find that

a1 = 100� 2t, a2 = 50 + 5t, a3 = 150� 5t, a4 = t

where t 2 R. Now we look for conditions on t. We know A3 did not break that law, so
0  a3  45, that is,

0  150� 5t  45

�150  �5t  �105

30 � t � 21

It immediately follows that A4 didn’t break that law as a4 = t. Looking at A2, we have

21  t  30

105  5t  150

155  50 + 5t  200

155  a2  200

so A2 broke the law. Finally, for A1, we find

21  t  30

�42 � �2t � �60

58 � 100� 2t � 40

58 � a1 � 40

so it is possible that A1 broke the law, but we cannot be sure without more information.
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Example 23.3. An engineering company has three divisions (Design, Production, Testing)
with a combined annual budget of $1.5 million. Production has an annual budget equal to
the combined annual budgets of Design and Testing. Testing requires a budget of at least
$80 000. What is the Production budget and the maximum possible budget for the Design
division?

Solution. Let x1 denote the annual Design budget, x2 the annual Production budget, and
x3 the annual Testing budget. It follows that x1 + x2 + x3 = 1 500 000. Since the annual
Production budget is equal the the combined Design and Testing budgets, we have x2 =
x1 + x3. This gives the system of equations

x1 + x2 + x3 = 1 500 000

x1 � x2 + x3 = 0

Row reducing the above system gives
"

1 1 1 1 500 000

1 �1 1 0

#
�!

R2�R1

"
1 1 1 1 500 000

0 �2 0 �1 500 000

#
�!
� 1

2R2

"
1 1 1 1 500 000

0 1 0 750 000

#
R1�R2

�!

"
1 0 1 750 000

0 1 0 750 000

#

This gives
x1 = 750 000� t, x2 = 750 000, x3 = t

where t 2 R. We know that the Testing budget requires at least $80 000 and can re-
ceive no more than $750 000 (since Testing shares a budget of $750 000 with Design). Thus
80 000  t  750 000. It follows that

�750 000  �t  �80 000

0  750 000� t  670 000

0  x1  670 000

Hence the Production budget is $750 000 and the maximum Design budget is $670 000.
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Lecture 24

Application: Network Flow

A network consists of a system of junctions or nodes that are connected by directed line
segments. These networks are used to model real world problems such as tra�c flow, fluid
flow, or any such system where a flow is observed. We observe here the central rule that
must be obeyed by these systems.

Junction Rule: At each of the junctions (or nodes) in the network, the flow into that
junction must equal the flow out of that junction.

Our goal is to achieve a network such that every junction obeys the Junction Rule. We say
that such a system is in a steady state or equilibrium.

Figure 47 below gives an example of a network with four nodes, A, B, C and D, and eight
directed line segments. We wish to compute all possible values of f1, f2, f3 and f4 so that
the system is in equilibrium.

Figure 47: A simple network
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Using the Junction Rule at each node, we construct the following table:

Flow In Flow Out

A : 40 = f1 + f4

B : f1 + f2 = 50

C : 60 = f2 + f3

D : f3 + f4 = 50

Rearranging each of the above four linear equations leads to the following system:

f1 + f4 = 40

f1 + f2 = 50

f2 + f3 = 60

f3 + f4 = 50

Row reducing the augmented matrix to RREF, we have

2

6664

1 0 0 1 40

1 1 0 0 50

0 1 1 0 60

0 0 1 1 50

3

7775

�!
R2�R1

2

6664

1 0 0 1 40

0 1 0 �1 10

0 1 1 0 60

0 0 1 1 50

3

7775

�!

R3�R2

2

6664

1 0 0 1 40

0 1 0 �1 10

0 0 1 1 50

0 0 1 1 50

3

7775

�!

R4�R3

2

6664

1 0 0 1 40

0 1 0 �1 10

0 0 1 1 50

0 0 0 0 0

3

7775

We find that
f1 = 40� t, f2 = 10 + t, f3 = 50� t and f4 = t

where t 2 R. We see that there are infinitely many values for f1, f2, f3 and f4 so that the
system is in equilibrium. Note that a negative solution for one of the variables means that the
flow is in the opposite direction than the one indicated in the diagram. Depending on what
the network is representing, we may require that each of f1, f2, f3 and f4 be nonnegative.
In this case,

f1 � 0 =) 40� t � 0 =) t  40

f2 � 0 =) 10 + t � 0 =) t � �10

f3 � 0 =) 50� t � 0 =) t  50

f4 � 0 =) t � 0

Here, we see that 0  t  40. They may be more constraints on f1, f2, f3 and f4. For exam-
ple, if the flows in the above network represent the number of automobiles moving between
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the junctions, then we further require f1, f2, f3 and f4 to be integers. In our example, this
would make t = 0, 1, 2, . . . 40, giving us 41 possible solutions.

When using linear algebra to model real world problems, we must be able to interpret our
solutions in terms of the problem it is modelling. This includes incorporating any real world
restrictions imposed by the system we are modelling.

Example 24.1. Consider four train stations labelled A, B, C andD. In the figure below, the
directed line segments represent train tracks to and from stations, and the numbers represent
the number of trains travelling on that track per day. Assume the tracks are one-way, so
trains may not travel in the other direction.

a) Find all values of f1, . . . , f5 so that the system is in equilibrium.

b) Suppose the tracks from A to C and from D to A are closed due to maintenance. Is it
still possible for the system to be in equilibrium?

Solution.

a) We construct a table:

Flow In Flow Out

A : 15 + f4 = 10 + f1 + f5

B : 20 + f1 = 10 + f2

C : 15 + f2 + f5 = 25 + f3

D : 5 + f3 = 10 + f4
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Rearranging gives the linear system of equations

f1 � f4 + f5 = 5

f1 � f2 = �10

f2 � f3 + f5 = 10

f3 � f4 = 5

which we carry to RREF
2

6664

1 0 0 �1 1 5

1 �1 0 0 0 �10

0 1 �1 0 1 10

0 0 1 �1 0 5

3

7775

�!
�R2

�R3

�R4

2

6664

1 0 0 �1 1 5

�1 1 0 0 0 10

0 �1 1 0 �1 �10

0 0 �1 1 0 �5

3

7775

�!
R2+R1

2

6664

1 0 0 �1 1 5

0 1 0 �1 1 15

0 �1 1 0 �1 �10

0 0 �1 1 0 �5

3

7775

�!

R3+R2

2

6664

1 0 0 �1 1 5

0 1 0 �1 1 15

0 0 1 �1 0 5

0 0 �1 1 0 �5

3

7775

�!

R4+R3

2

6664

1 0 0 �1 1 5

0 1 0 �1 1 15

0 0 1 �1 0 5

0 0 0 0 0 0

3

7775

giving

f1 = 5 + s� t, f2 = 15 + s� t, f3 = 5 + s, f4 = s and f5 = t

for integers s, t (as we cannot have fractional trains). Moreover, as trains cannot go
the other way, we immediately have

f1 � 0 =) 5 + s� t � 0 =) s� t � �5

f2 � 0 =) 15 + s� t � 0 =) s� t � �15

f3 � 0 =) 5 + s � 0 =) s � �5

f4 � 0 =) s � 0

f5 � 0 =) t � 0

so we have s, t � 0 and s� t � �5.

b) Assume the tracks from A to C and from D to A are closed. This forces f4 = f5 = 0.
From our previous solution, we have that s = t = 0. Since s � t = 0 � �5, this is a
valid solution. We have

f1 = 5, f2 = 15, f3 = 5, f4 = 0 and f5 = 0

Notice here we have a unique solution.
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Application: Electrical Networks

Consider the following electrical network shown in Figure 48:

Figure 48: An electrical network

It consists of voltage sources, resistors and wires. A voltage source (often a battery) provides
an electromotive force V measured in volts. This electromotive force moves electrons through
the network along a wire at a rate we refer to as current I measured in amperes (or amps).
The resistors (lightbulbs for example) are measured in ohms ⌦, and serve to retard the
current by slowing the flow of electrons. The intersection point between three or more wires
is called a node. The nodes break the wires up into short paths between two nodes. Every
such path can have a di↵erent current, and the arrow on each path is called a reference
direction. Pictured here is a voltage source (left) and a resistor (right) between two nodes.

One remark about voltage sources. If a current passes through a battery supplying V volts
from the “�” to the “+”, then there is a voltage increase of V volts. If the current passes
through the same battery from the “+” to the “�”, then there is a voltage drop (decrease)
of V volts.
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Our aim is to compute the currents I1, I2 and I3 in Figure 48. The following laws will be
useful.

Ohm’s Law The potential di↵erence V across a resistor is given by V = IR, where I is the
current and R is the resistance.

Note that the reference direction is important when using Ohm’s Law. A current I travelling
across a resistor of 10⌦ in the reference direction will result in a voltage drop of 10I while
the same current travelling across the same resistor against the reference direction will result
in a voltage gain of 10I.

Kircho↵ ’s Laws

1. Conservation of Energy: Around any closed voltage loop in the network, the algebraic
sum of voltage drops and voltage increases caused by resistors and voltage sources is
zero.

2. Conservation of Charge: At each node, the total inflow of current equals the total
outflow of current.

Kircho↵’s Laws will be used to derive a system of equations that we can solve in order to find
the currents. The Conservation of Energy requires using Ohm’s Law. Returning to Figure
48, we can now solve for I1, I2 and I3. Notice that there is an upper loop, and a lower loop.
We may choose any orientation we like for either loop. Given the reference directions, we
will use a clockwise orientation for the upper loop and a counterclockwise orientation for the
lower loop. We will compute the voltage increases and drops as we move around both loops.
Conservation of Energy says the voltage drops must equal the voltage gains around each loop.

For the upper loop, we can start at node A. Moving clockwise, we first have a voltage gain
of 5 from the battery, then a voltage drop of 5I1 at the 5⌦ resistor and a 10I2 voltage drop
at the 10⌦ resistor. Thus

5I1 + 10I2 = 5 (15)

For the lower loop, we can again start at node A. Moving counterclockwise, we have a
voltage drop of 5I3 followed by a voltage increase of 10 and finally a voltage drop of 10I2.
We have

10I2 + 5I3 = 10 (16)

Now, applying the Conservation of Charge to node A gives I1 + I3 = I2 so we obtain

I1 � I2 + I3 = 0 (17)
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Note that at node B we obtain the same equation, so including it would be redundant.
Combining equations (15), (16) and (17) gives the system of equations

I1 � I2 + I3 = 0

5I1 + 10I2 = 5

10I2 + 5I3 = 10

Carrying the augmented matrix of this system to RREF,
2

64
1 �1 1 0

5 10 0 5

0 10 5 10

3

75
�!

R2�5R1

2

64
1 �1 1 0

0 15 �5 5

0 10 5 10

3

75
�!
1
5R2

1
5R3

2

64
1 �1 1 0

0 3 �1 1

0 2 1 2

3

75
�!

R2�R3

2

64
1 �1 1 0

0 1 �2 �1

0 2 1 2

3

75
R1+R2

�!
R3�2R2

2

64
1 0 �1 �1

0 1 �2 �1

0 0 5 4

3

75
�!

1
5R3

2

64
1 0 �1 �1

0 1 �2 �1

0 0 1 4/5

3

75
R1+R3

R2+2R3

�!
2

64
1 0 0 �1/5

0 1 0 3/5

0 0 1 4/5

3

75

we see that I1 = �1/5 amps, I2 = 3/5 amps and I3 = 4/5 amps. Notice that I1 is negative.
This simply means that our reference direction for I1 in Figure 48 is incorrect and the cur-
rent flows in the opposite direction there. Note that the reference directions may be assigned
arbitrarily.

Note that there is actually a third loop in Figure 48: the loop that travels along the outside
of the network. If we start at node A and travel clockwise around this loop, we first have
a voltage increase of 5, then a voltage drop of 5I1, then another voltage drop of 10 (as we
pass through the 10V battery from “+” to “�”) and finally a voltage increase of 5I3 (as we
pass through the 5⌦ resistor in the opposite reference direction for I3). As voltage increases
equal voltage drops, we have 5 + 5I3 = 5I1 + 10, or 5I1 � 5I3 = �5. However, this is just
Equation (16) subtracted from Equation (15). Including this equation in our above system
of equations would only result in an extra row of zeros when we carried the resulting system
of equations to RREF. This will be true in general, and shows that when computing current
in an electrical network, we only need to consider the “smallest” loops.

Another note is that we chose to orient the upper loop in the clockwise direction and the
lower loop in the counterclockwise direction. This was totally arbitrary (but made sense
given the reference directions). We could have changed either of the directions. Of course,
as we saw in the previous paragraph, we have to consider which way our orientation will
cause the current to flow through a battery, and how to handle resistors if our orientation
has us moving in the opposite direction of a reference direction.
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One last thing to notice here is that since I1 is negative, the current is actually flowing
backwards through the 5V battery. This can happen in a poorly designed electrical network
- the 10V battery is too strong and actually forces the current to travel through the 5V
battery in the wrong direction. Too much current being forced through a battery in the
wrong direction will lead to a fire.

Example 24.2. Find the currents in the following electrical network:

Solution. We begin by using the Conservation of Energy on each of the three smallest closed
loops. Going clockwise around the left loop starting at A, we see a voltage drop of 20I2, a
voltage gain of 10 and then a drop of 20I1. This gives

20I1 + 20I2 = 10 or 2I1 + 2I2 = 1

Traversing the middle loop clockwise starting at A, we have a voltage drop of 20I3 followed
by a gain of 20I2 (note the we pass the resistor between A and C in the opposite direction
of I2). We obtain

20I2 = 20I3 or I2 � I3 = 0

Moving clockwise around the right loop starting at B, we observe a voltage gain of 20,
followed by a drop of 20I5 and then a gain of 20I3 leading to

20I5 = 20 + 20I3 or I3 � I5 = �1

Next, we apply the Conservation of Charge to the nodes A, B, C and D (in that order) to
obtain the equations

I1 � I2 � I4 = 0

I3 � I4 + I5 = 0

I1 � I2 � I6 = 0

I3 + I5 � I6 = 0
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Finally, we have constructed the system of equations

2I1 + 2I2 = 1

I2 � I3 = 0

I3 � I5 = �1

I1 � I2 � I4 = 0

I3 � I4 + I5 = 0

I1 � I2 � I6 = 0

I3 I5 � I6 = 0

Carrying the augmented matrix of this system to RREF, we have
2

666666666664

2 2 0 0 0 0 1

0 1 �1 0 0 0 0

0 0 1 0 �1 0 �1

1 �1 0 �1 0 0 0

0 0 1 �1 1 0 0

1 �1 0 0 0 �1 0

0 0 1 0 1 �1 0

3

777777777775

�!

R1$R4

2

666666666664

1 �1 0 �1 0 0 0

0 1 �1 0 0 0 0

0 0 1 0 �1 0 �1

2 2 0 0 0 0 1

0 0 1 �1 1 0 0

1 �1 0 0 0 �1 0

0 0 1 0 1 �1 0

3

777777777775

�!

R4�2R1

R6�R1

2

666666666664

1 �1 0 �1 0 0 0

0 1 �1 0 0 0 0

0 0 1 0 �1 0 �1

0 4 0 2 0 0 1

0 0 1 �1 1 0 0

0 0 0 1 0 �1 0

0 0 1 0 1 �1 0

3

777777777775

R1+R2

�!

R4�4R2

2

666666666664

1 0 �1 �1 0 0 0

0 1 �1 0 0 0 0

0 0 1 0 �1 0 �1

0 0 4 2 0 0 1

0 0 1 �1 1 0 0

0 0 0 1 0 �1 0

0 0 1 0 1 �1 0

3

777777777775

R1+R3

R2+R3

�!
R4�4R3

R5�R3

R7�R3

2

666666666664

1 0 0 �1 �1 0 �1

0 1 0 0 �1 0 �1

0 0 1 0 �1 0 �1

0 0 0 2 4 0 5

0 0 0 �1 2 0 1

0 0 0 1 0 �1 0

0 0 0 0 2 �1 1

3

777777777775

�!

R4$R6

2

666666666664

1 0 0 �1 �1 0 �1

0 1 0 0 �1 0 �1

0 0 1 0 �1 0 �1

0 0 0 1 0 �1 0

0 0 0 �1 2 0 1

0 0 0 2 4 0 5

0 0 0 0 2 �1 1

3

777777777775

R1+R4

�!

R5+R4

R6�2R4
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2

666666666664

1 0 0 0 �1 �1 �1

0 1 0 0 �1 0 �1

0 0 1 0 �1 0 �1

0 0 0 1 0 �1 0

0 0 0 0 2 �1 1

0 0 0 0 4 2 5

0 0 0 0 2 �1 1

3

777777777775

�!

1
2R4

1
4R5

1
2R7

2

666666666664

1 0 0 0 �1 �1 �1

0 1 0 0 �1 0 �1

0 0 1 0 �1 0 �1

0 0 0 1 0 �1 0

0 0 0 0 1 �1/2 1/2
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Finally, we see

I1 =
5

8
amps, I2 = �1

8
amps, I3 = �1

8
amps,

I4 =
3

4
amps, I5 =

7

8
amps, I6 =

3

4
amps

In particular, the reference arrows for I2 and I3 are pointing in the wrong direction.
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