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Polynomials Over R

0.1 Introduction

In mathematics, expressions of the form z2 4+ 2z + 1 or 22 — 1 are called polynomials. They
are built using a symbol x and coefficients taken from a certain set. In Chapter 1, we
introduced set notation. In this chapter, we consider the set of polynomials. We will start
by introducing the polynomials with coefficients in the set of real numbers R. We will
explore some of their properties that are analogous with the set of integers Z. Then, we
will generalize the notation to polynomials over an arbitrary field (we will introduce the
definition of a field in Chapter 11) and consider their respective factorizations.

A polynomial in x with coefficients in R is an expression of the form
ant™ + an_12" '+ -+ a1z + ag,

where n > 0 is an integer, and

e 1 is a symbol called an indeterminate, and

® ag,ai,...,a, are elements of R.

Each individual a; is called a coefficient of the polynomial, and each individual expression
of the form a;x' is called a term of the polynomial.

We use the notation R[z] to denote the set of all polynomials with coefficients in R.

As examples of polynomials in R[z], we have

o — 124+ \Tzx—1.
o %x5—%x4+x3—x2+5x+%.

o 5zt + 023 4+ 122 + 02 — 2. We would usually express the term 1z? simply as 22 and
omit the terms 0z3 and Oz, and write the polynomial more simply as 5z* + 22 — 2.

One of the most important properties of a polynomial is its degree, which we define next.
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Let ap2™+a,_12" 14 - -+a12+ag be a polynomial in R[x], where n > 0 is an integer, and
an # 0. Then the polynomial is said to have degree n and we write deg f(x) = n. In other
words, the degree of a polynomial is the largest power of x that has a non-zero coefficient.

The zero polynomial has all of its coefficients equal to zero, and its degree is undefined.

A constant polynomial is a polynomial that is either the zero polynomial or a polynomial
of degree 0. Polynomials of degree 1, 2 and 3 are called linear polynomials, quadratic
polynomials, and cubic polynomials, respectively.

As examples of the degree of polynomials, we have

o 213 + /222 — %’rx + % is a cubic polynomial.
o —22++/Tx — 1 is a quadratic polynomial.
° %x5 — %x4 I ) — g bl % is a polynomial of degree 5.

o 022+ 022 + 32 + 0 is a linear polynomial, since the largest power of 2 with a non-zero

coefficient is z = x1.

e 7 is a constant non-zero polynomial and its degree is 0.

e (0 is a constant zero polynomial and its degree is undefined.

We end the section by defining what it means for two polynomials to be equal.

The polynomials a,z" 4+ ap_12" 1 + -+ + a1 + ag, and b,z™ + by_12™ 1 + - + bz + by
in R[z| are equal if and only if ay = by for all k =0,1,...,n.

0.2 Arithmetic with Polynomials

Arithmetic can be done with polynomials just as you have done in high school. When
working with polynomials, we will sometimes use both function notation and summation
notation. That is, we use f(x) to denote an element of R[z], and write

f(x) =apx™ + 12"V 4 -+ a1z + ap.

We begin this section by formally defining the addition and the multiplication of polyno-
mials. The notation “max{m,n}” denotes the mazimum of m and n.
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addition and f(x) = ama™ + am_12™ " + -+ a12 + ag
multiplication of
polynomials and

g(x) = bpz™ + b1z L+ bz + by
be polynomials in R[z]. Without loss of generality, we suppose that m < n and write
() = anz™ + - + amp12™ + anz™ 4 am_12™ 7 + a1z + ag,

where a, = -+ = amy1 = 0.

e Addition of f(z) and g(x) is defined by
f(:L’) + g('r) = (an + bn)xn + (an—l + bn—l)xn_l SFcooaF (al + bl)l' I (a() + bo).

e Multiplication of f(z) and g(z) is defined by

f(@)g(x) = (amz™ + am—12™ "+ + @13 + ag) (bpz” + by 12" + -+ + b1z + bo)
= agbo + (agby + a1bo)x + (aghe + arby + azbo)x? + -+ + gzt + -+ + ambpr™ ™,

where
¢ = agby + arbj—1 + - -+ + aj—1b1 + a;bo.

Example 3  In R[z], for f(z) = 22 + 7z — 1 and g(z) = v/222 + 422 — 3z, we obtain

f(@) + g(z) = V223 + 5% + 42 — 1,
f(@)g(x) = V22 + (4 4+ 7V2)z* + (25 — V2)x3 — 2522 + 3z.

Next we give a very useful lemma about the degree of a product of two non-zero polynomials.

Lemma 1 (Degree of a Product (DP))

For all non-zero polynomials f(z) and g(x) in R[z], we have

deg f(x)g(x) = deg f(x) + deg g(x).

Proof: Let m and n be arbitrary non-negative integers. Let f(z) = anz™ + -+ -+ a1z + ag
and g(z) = bpz™ + -+ 4+ bix + by be arbitrary polynomials in R[z] of degree m and n,
respectively, so we have a,,, # 0 and b, # 0. Now from the definition of multiplication, we
have f(z)g(x) = cpina™™ + -+ + 17 + o, where ¢ty = amby. Since a,, and b, are
non-zero real numbers, it follows that ¢4y = amby, is also non-zero. We therefore conclude
that deg f(x)g(xz) = m +n = deg f(x) + deg g(x). O
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0.3 Polynomial Divisibility

In this section, as well as in the following two sections, we will explore some properties
about the set of polynomials R[z]| that are similar to the set of integers Z. We first consider
division of polynomials. We define what it means for one polynomial to divide another in
a similar way as for the integers.

For polynomials f(z) and g(z) over R, we say that g(x) divides f(x) or g(x) is a factor of
f(z), and we write g(z) | f(x), if there exists a polynomial ¢(z) such that f(z) = q(z)g(x).

As examples of polynomial division in R[z], we have

e z — 1 divides 2% — 22, because 2% — 22 = 2%(z — 1).
e 22 — \/2x + 1 divides z* + 1, because z* + 1 = (22 — v22 + 1)(2% + v2z + 1).

e Any non-zero constant polynomial ¢ divides any polynomial f(z) € Rz], because

f@) = (3f(@)) e

e The only polynomial that divides the zero polynomial is the zero polynomial itself.

It turns out that there is a lot of similarity between the division of integers and the division
of polynomials. The following two results resemble Propositions 7 and 9, respectively, stated
in Section 3.4. We leave their proofs as exercises.

(Transitivity of Divisibility for Polynomials (TDP))
For all polynomials f(x), g(z), h(z) in Rlz], if f(x) | g(z) and g(x) | h(x), then f(z) | h(z).

(Divisibility of Polynomial Combinations (DPC))

For all polynomials f(x), g(x),h(z) in Rz], if f(z) | g(x) and f(z) | h(x), then
f(@) ] (a(z)g(x) + b(z)h(z)) for all polynomials a(z),b(z) in R[z].

0.4 The Division Algorithm for Polynomials

Another thing that polynomials and integers have in common is that when we divide one
polynomial by another, we get a quotient polynomial and a remainder polynomial. The re-
sult that describes precisely what happens is called the Division Algorithm for Polynomials,
and is stated next. This result is not proved in this course. Note that we use the notation
q(z) for the quotient polynomial, and r(x) for the remainder polynomial, to emphasize the
similarity with the Division Algorithm for integers that we have already seen, as Proposition
3 in Section 6.1.
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(Division Algorithm for Polynomials (DAP))

For all polynomials f(z) and g(x) in R[z] with g(z) not the zero polynomial, there exist
unique polynomials ¢(z) and r(x) in R[z] such that

f(@) = q(x)g(x) + r(z),

where r(x) is the zero polynomial, or degr(z) < deg g(z).

Note that g(z) divides f(z) when the remainder r(z) from DAP is the zero polynomial, or
when f(x) and g(z) are both the zero polynomial.

Given a polynomial f(z) and a non-zero polynomial g(x), in order to find the quotient and
remainder polynomials ¢(z) and r(z) featured in DAP, we use a process called long division.
This process starts with the largest powers of z in f(z) and g(z), and is demonstrated in
the following pair of examples. The following is an example of DAP for polynomials in R[z],

(Long Division of Polynomials over R)

What are the quotient and remainder polynomials when f(z) = 3z* + 23 — 422 — x4+ 5 is
divided by g(z) = 22 + 1 in R[x]?

Before we begin, we would expect from the Division Algorithm for Polynomials that the
remainder polynomial is either the zero polynomial, or has degree at most one. Now we
carry out the long division:

322 + =z — T
22 + 1 3zt + 2 — 422 - z +
RV + 322
o= T = @ 4= 5
8 -
- T® - 2z + 5
- T2? - 7
- 2z + 12

Thus, the quotient polynomial is ¢(z) = 322 + z — 7 and the remainder polynomial is
r(x) = —2x + 12, of degree 1, and we can check that indeed f(x) = q(z)g(z) + r(x).

A polynomial equation is an equation of the form
ant” + ap_12" P+ +az+ao=0

which will often be written as f(x) = 0, where f(z) = ap2™+a, 12" '+ - +ajr+ag € R[z].
An element ¢ € R is called a root of the polynomial f(x) if f(¢) =0 (equivalently, if ¢ is a
solution of the polynomial equation f(z) = 0).

We now apply the Division Algorithm for Polynomials to prove a very useful result for
polynomials over R.
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(Remainder Theorem (RT))

For all polynomials f(z) € Rlz] and all ¢ € R, the remainder polynomial when f(x) is
divided by z — ¢ is the constant polynomial f(c).

Proof: Let f(x) be an arbitrary polynomial in R[z] and ¢ be an arbitrary element of R.
Applying the Division Algorithm for Polynomials with g(x) = x — ¢, there exist unique
polynomials ¢(x) and r(z) such that

f(@) = q(z)(x = ¢) + (),

where degr(x) < deg(x — ¢) = 1 or r(x) is the zero polynomial. Therefore, the remainder
r(x) is a constant polynomial (which could be zero), and we will denote it by ry. Hence we
have

f(@) = q()(z = ¢) + ro,

and substituting « = ¢ into this equation gives f(c) = ro. O

Find the remainder when f(z) = 1222 — 721! 4+ 42° — 1125 4 222 — 2+ 2 is divided by z + 1.
Solution: Instead of doing long division, we use the Remainder Theorem, by calculating
f(=1) =12(-1)2 = 7(=D)M +4(-1)? = 11(=1)> + 2(=1)2 = (=1) + 2
=12-7(-1)+4(-1) - 11(-1)+2—-(-1) + 2

=12+7-4+114+24+142
= 31.

Hence the remainder is 31.

The Remainder Theorem immediately implies the following corollary about linear factors
of a polynomial.

(Factor Theorem (FT))

For all polynomials f(z) € R[z] and all ¢ € R, the linear polynomial 2 — ¢ is a factor of the
polynomial f(x) if and only if f(c) = 0 (equivalently, c is a root of the polynomial f(z)).

The Factor Theorem gives us a linear factor & — ¢ of a polynomial f(z) over R whenever ¢
is a root of f(z).

0.5 Polynomial Factorization

Recall how in Section 6.6 we defined the notion of a prime number and how we proved that
every integer n > 1 can be written as a product of primes. It turns out that an analogous
result holds for polynomials, and the so-called irreducible polynomials in R|x| play a role
similar to a role that primes play in Z.
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A polynomial f(x) € R[x| of positive degree is a reducible polynomial in R[z] when we
can write f(z) = g(x)h(z) with g(x),h(x) € R[z] and 1 < degg(x),degh(z) < deg f(z).
Otherwise, we say f(z) is an irreducible polynomial in R[z].

As examples of reducible and irreducible polynomials in R[z], we have

e 22 — 1= (z+1)(z — 1) is reducible in R[z].
o 2 +1= (22224 1)(2%+ v2zx + 1) is reducible in R[z].
e x + 7 is irreducible in R[z].

e 22 + 1 is irreducible in R[z].

The following proposition is a generalization of Proposition 11 (Prime Factorization) from
Section 6.6. We will leave its proof as an exercise.

(Factorization Into Irreducible Polynomials (FIIP))

Every polynomial in R[z]| of positive degree can be written as a product of irreducible
polynomials.

Later in Chapter 11 we will learn that all irreducible polynomials in R[x] have either degree 1

or degree 2. In other words, every polynomial in R[z| of degree at least 3 is guaranteed to
be reducible.
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