
The reduction of the number of flip-flops in a sequential
circuit is referred to as the state reduction problem. When
designing complex state machines, it often happens that
there are equivalent states that can be grouped together to
obtain a more efficient implementation

State-reduction algorithms are concerned with procedures
for reducing the number of states in a state table, while
keeping the external input-output requirements unchanged.

Since (N) flip-flops produce (2^N) states, a reduction in the
number of states may (or may not) result in a reduction in
the number of flip-flops.

An unpredictable outcome in reducing the number of flip-
flops is the possibility that the equivalent circuit (with fewer
flip-flops) may require more combinational gates.

Assume that we have found a sequential circuit whose state
diagram with a reduced number of states. We wish to
compare it with the unreduced circuit state diagram. If
identical input sequences are applied to the two circuits and
identical outputs occur for all input sequences, then the two
circuits are said to be equivalent (as far as the input-output is
concerned) and one may be replaced by the other.

State Reduction:

What is state
Reduction?

Equivalent
Machines

The problem of state reduction is to find ways of reducing the number
of states in a sequential circuit without altering the input-output
relationships.
<

State Reduction
Techniques

Equivalent Machines

p

0- and 1-
successors

• Two states S1 are S2 are called equivalent if and
only if, for every possible input sequence, the same
output will be produced regardless of whether S1 or
S2 is the initial state.

Equivalent
States

State
Reduction
Techniques

• State Partitioning Technique

• Implication Table Technique

• If input w=0 is applied to a state machine in
state S1 and the result is that the machine
moves to state S2, we say that S2 is a 0-
successor of S1

•If input w=1 is applied to a state machine in
state S1 and the result is that the machine
moves to state S3, we say that S3 is a 1-
successor of S1

• We will refer to successorsas k-successors,
where k can be 0 or 1.

mend

if
.

mama

State minimization Basic idea:

Two states are not
equivalent if they have
different output values

Two states are not equivalent if at
least one of their k-successors are
not equivalent

State Reduction by Partitioning
The minimization procedure first considers the states of a
machine as a set and then breaks this set into partitions
that are not equivalent.

• A partition consists of one or more blocks
 – each block contains states that may be equivalent
 – different blocks contain states that are definitely not equivalent
Example State Minimization:

i

:$
nip

We start with one block containing all states
• P1= (ABCDEFG)

• Stage 1:
 – Which states have different outputs?
 • ABD has output z = 1
 • CEFG have output z = 0
 • => P2= (ABD) (CEFG)

P2= (ABD) (CEFG)

Stage 2 '
– Which states have different k-successors?

• Block ABD

– 0-successor: A -> B , B-> D , D -> B (all transitions go to the same block)

– 1-successor: A -> C , B -> F , D -> G (all transitions go to the same block)

• Block CEFG

– 0-successor: C -> F , E -> F , F -> E , G -> F (all transitions goto . the same block)

– 1-successor: C -> E , E -> C , F -> D , G -> G (F -> D goes to another block)

=> P3= (ABD) (CEG) (F)

8 00

É

☒
- I

0 -- -

-

÷
-⑤⑦→

P3= (ABD) (CEG) (F)
Step 3
– What states have different k-successors?

• Block ABD

– 0-successor: A-> B, B -> D, D -> B (all transitions go to the same block)

– 1-successor: A -> C, B -> F, D -> G (B -> F goes to another block)

=> P4= (AD) (B) (CEG) (F)

• Block (CEG)

– 0-successor: C -> F-> E -> F, G -> F (all transitions go to the same block)

– 1-successor: C -> E, E -> C, G -> G (all transitions go to the same block)

=> P4= (AD) (B) (CEG) (F)

P4= (AD) (B) (CEG) (F)

Next partition P5 becomes the same as P4. Thus
the procedure is finished.

– States in each block are equivalent
 if they were not, their k-successors would have to be in
different blocks
 A becomes the representive of AD and C represents CEG.

P4 = (AD)(B)(CEG)(F) = (A)(B)(C)(F)

Too ✓
O

= O
-00-0--0

••
BE

Bao p
Fas - O

O § ←

State Reduction

FSM with one input X, and one output Z:
(transitions are labelled X/Z)

State diagrams should never be used for state
reduction. In more complex systems it is
very easy to miss possible state reductions
due to the complexity of the diagrams
involved.

28

IMPLICATION CHARTS

Implication Charts

33

✓

✓

✓

✓

✓

✓

✓
/

Implication Charts

34

1. Draw grid

O is 00 : :

¥ In

:

Implication Charts

35

2. Where states do not have the same
outputs, place an x

Ey
8 00

Implication Charts

36

3. Where states have the same output,
put equalities in the box

%
°

c

:

Implication Charts

37

4. Where equivalents are false, cross
out the box

(e.g. B,F has C≡F as a false equivalent as
C,F has no contents)

*. ¥i÷÷¥÷:
A TD AD → BE

Implication Charts

38

5. Repeat until no more can be
cancelled

Implication Charts

39

6. What is left can be replaced with
equivalents

(e.g. H with E, G with D)
--

Implication Charts

40

7. Draw reduced state table

Merger Diagrams

41

Sometimes implication charts show many possible
equivalences. If this occurs a Merger diagram
will be required

A ≡ B and A ≡ C implies B ≡ C
This is impossible as B ≠ C

:

Merger Diagrams

� Lines are placed on the merger
diagram with regards to all possible
equivalences

� Polygons formed by these lines with
all their sides displayed are to be
found.

� The triangle GDH determines that
G≡D≡H must be true

42

G≡H≡D
A ≡ B
A ≡ C
B ≠ C

Merger Diagrams

� We are left with an arbitrary
decision between A≡B and A≡C

43

G≡H≡D
A ≡ B
A ≡ C
B ≠ C

Merger Diagrams

� We are left with an arbitrary
decision between A≡B and A≡C

43

G≡H≡D
A ≡ B
A ≡ C
B ≠ C

