
The reduction of the number of flip-flops in a sequential 
circuit is referred to as the state reduction problem. When 
designing complex state machines, it often happens that 
there are equivalent states that can be grouped together to 
obtain a more efficient implementation

State-reduction algorithms are concerned with procedures 
for reducing the number of states in a state table, while 
keeping the external input-output requirements unchanged. 

Since (N) flip-flops produce (2^N) states, a reduction in the 
number of states may (or may not) result in a reduction in 
the number of flip-flops. 

An unpredictable outcome in reducing the number of flip-
flops is the possibility that the equivalent circuit (with fewer 
flip-flops) may require more combinational gates. 

Assume that we have found a sequential circuit whose state 
diagram with a reduced number of  states. We wish to 
compare it with the unreduced circuit state diagram. If 
identical input sequences are applied to the two circuits and 
identical outputs occur for all input sequences, then the two 
circuits are said to be equivalent (as far as the input-output is 
concerned) and one may be replaced by the other.

State Reduction:

What is state 
Reduction?

Equivalent 
Machines

The problem of state reduction is to find ways of reducing the number 
of states in a sequential circuit without altering the input-output 
relationships. 
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State Reduction 
Techniques

Equivalent Machines
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0- and 1-
successors

• Two states S1 are S2 are called equivalent if and 
only if, for every possible input sequence, the same 
output will be produced regardless of whether S1 or 
S2 is the initial state.

Equivalent
States

State 
Reduction 
Techniques

• State Partitioning Technique

• Implication Table Technique

• If input w=0 is applied to a state machine in 
state S1 and the result is that the machine 
moves to state S2, we say that S2 is a 0- 
successor of S1 

•If input w=1 is applied to a state machine in 
state S1 and the result is that the machine 
moves to state S3, we say that S3 is a 1- 
successor of S1 

• We will refer to successorsas k-successors, 
where k can be 0 or 1.
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State minimization Basic idea:

Two states are not 
equivalent if they have 
different output values

Two states are not equivalent if at 
least one of their k-successors are 
not equivalent

State Reduction by Partitioning 
The minimization procedure first considers the states of a 
machine as a set and then breaks this set into partitions 
that are not equivalent.

• A partition consists of one or more blocks
     – each block contains states that may be equivalent
     – different blocks contain states that are definitely not equivalent
Example State Minimization:

i

:$
nip



We start with one block containing all states
• P1= (ABCDEFG)

• Stage 1:
         – Which states have different outputs?
         • ABD has output z = 1
         • CEFG have output z = 0
         • => P2= (ABD) (CEFG)

P2= (ABD) (CEFG)

Stage 2 '
– Which states have different k-successors?

• Block ABD

– 0-successor: A -> B , B-> D , D -> B (all transitions go to the same block)

– 1-successor: A -> C , B -> F , D -> G (all transitions go to the same block)

• Block CEFG

– 0-successor: C -> F , E -> F , F -> E , G -> F (all transitions goto . the same block)

– 1-successor: C -> E , E -> C , F -> D , G -> G (F -> D goes to another block)

=> P3= (ABD) (CEG) (F)

8 00

É

☒
- I

0 -- -

-

÷
-⑤⑦→



P3= (ABD) (CEG) (F)
Step 3
– What states have different k-successors?

• Block ABD

– 0-successor: A-> B, B -> D, D -> B (all transitions go to the same block)

– 1-successor: A -> C, B -> F, D -> G (B -> F goes to another block)

=> P4= (AD) (B) (CEG) (F)

• Block (CEG)

– 0-successor: C -> F-> E -> F, G -> F (all transitions go to the same block)

– 1-successor: C -> E, E -> C, G -> G (all transitions go to the same block)

=> P4= (AD) (B) (CEG) (F)

P4= (AD) (B) (CEG) (F)

Next partition P5 becomes the same as P4. Thus 
the procedure is finished.

– States in each block are equivalent
       if they were not, their k-successors would have to be in 
different blocks
       A becomes the representive of AD and C represents CEG.

P4 = (AD)(B)(CEG)(F) = (A)(B)(C)(F)
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State Reduction

FSM with one input X, and one output Z:
(transitions are labelled X/Z)

State diagrams should never be used for state 
reduction. In more complex systems it is 
very easy to miss possible state reductions 
due to the complexity of the diagrams 
involved.

28

IMPLICATION CHARTS



Implication Charts
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Implication Charts
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1. Draw grid
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Implication Charts
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2. Where states do not have the same 
outputs, place an x
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Implication Charts
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3. Where states have the same output, 
put equalities in the box

%
°

c

:



Implication Charts
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4. Where equivalents are false, cross 
out the box 

(e.g. B,F has C≡F as a false equivalent as 
C,F has no contents)

*. ¥i÷÷¥÷:
A TD AD → BE



Implication Charts
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5. Repeat until no more can be 
cancelled



Implication Charts
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6. What is left can be replaced with 
equivalents

(e.g. H with E, G with D)
--



Implication Charts
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7. Draw reduced state table



Merger Diagrams
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Sometimes implication charts show many possible 
equivalences. If this occurs a Merger diagram 
will be required

A ≡ B and A ≡ C implies B ≡ C
This is impossible as B ≠ C
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Merger Diagrams

� Lines are placed on the merger 
diagram with regards to all possible 
equivalences

� Polygons formed by these lines with 
all their sides displayed are to be 
found.

� The triangle GDH determines that 
G≡D≡H must be true
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G≡H≡D
A ≡ B
A ≡ C
B ≠ C



Merger Diagrams

� We are left with an arbitrary 
decision between A≡B and A≡C
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G≡H≡D
A ≡ B
A ≡ C
B ≠ C



Merger Diagrams

� We are left with an arbitrary 
decision between A≡B and A≡C
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G≡H≡D
A ≡ B
A ≡ C
B ≠ C


