3B SE

SE380: Introduction to Feedback Control

Concepts

To study for final:

  • How to do nyquist plot
  • how the root locus works
  • The formulas for the peak time, etc.

For a more complex transfer function, how can you seperate it in 2?

Steps

Step 1: Study the system (inputs / outputs, actuators / sensors) Step 2: Define control specifications Step 3: Obtain a model of the system (first principles, data) Step 4: Simplify the model (ex: linearization) Step 5: Design the controller Step 6: Simulate the controlled system using the model

Notes are really hard to type out.

Lecture Notes

Summary here

The

09-16-2024

With the linearized equation, we have

Taking the Laplace transform, we get

Solving for :

sIX(s) - AX(s) = BU(s) \\ X(s) = (sI - A)^{-1} B U(s) \end{align}$$ An inverse exists when the determinant is non-zero, i.e. $det(sI -A)) \neq 0$ Solving for $Y(s)$ after plugging $X(s)$: $$\begin{align} Y(s) = C (sI - A)^{-1} B U(s) + D U(s)\\ Y(s) = (C (sI - A)^{-1} B + D) U(s) \end{align}

represents the influence of on .

Compute response to .

For single input single output systems (SISO):

Definition: A transfer function is real rational if

is proper if exists. is strictly proper if

is a pole of if root of denominator is a zero of if root of denominator

2024-09-18

\begin{align} G(s) &= \frac{Y(s)}{U(s)} \\ &= C (sI - A)^{-1} B + D \\ &=[1 \quad 0] \left(s \begin{bmatrix}1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix}0 & 1 \\ \frac{-g}{l} & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix}0 \\ 1 \end{bmatrix} + 0 \\ &=[1 \quad 0] \left(\begin{bmatrix}s & -1 \\ \frac{g}{l} & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix}0 \\ 1 \end{bmatrix}\\ &= \frac{1}{s^2 + \frac{g}{l}} \end{align}$$ $$G(s)= \frac{1}{s^2 + \frac{g}{l}}$$ m = 0, n = 2 It is both proper and strictly proper. We have no zeros, poles = $\pm J \sqrt{\frac{g}{l}}$ Example 2 $$\begin{align} &\dot{x}_{ts} = u_{ts} \\ &\dot{x}_{em} = u_{em} \\ &\dot{x}_i = x_{ts} - x_i, i.e. \{1 \dots 5\} \\ &\dot{x}_j = x_{em} - x_j, j \in \{6 \dots 8\} \\ \end{align}

2024-09-20

Dropping Deltas

\dot{x} = u \\ y = x \\ \end{cases}

y(t) &= \int_0^t u(\tau) d\tau \\ &= \int_0^t (u (\tau) - s(\tau)) d\tau \\ \end{align}$$ $$y(t) = L^{-1} \left\{ \sum_{i=1}^n \frac{A_i}{s - p_i} + \frac{Q}{s-jw} + \frac{\overline{Q}}{s+jw} \right\}$$ Assuming $Re(p_i) < 0$, then we have $A_i e ^{p_i t} = 0$ as $t \rightarrow \infty$. $$y(t) = L^{-1} \left\{\frac{Q}{s-jw} + \frac{\overline{Q}}{s+jw} \right\}$$ #### 2024-11-22 $$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x_2} = u + x_2 \\ y = x_1\end{cases}$$