Kosaraju’s Algorithm
This is a template to solve 2SAT.
2-SAT
2SAT (Boolean satisfiability problem) is the problem of assigning Boolean values to variables to satisfy a given Boolean formula.
The original 2-sat logic: You convert the or statements into a series of implications, great video by Algorithms live to rewatch here.
For solving 2SAT, you just follow 2 simple steps:
- Translate the problem in the right variables
- Apply the 2SAT algorithm
The choice of the variables is very important.
comp[v]
(comp == component) denotes the index of strongly connected component to which the vertex belongs.
int n;
vector<vector<int>> adj, adj_t;
vector<bool> used;
vector<int> order, comp;
vector<bool> assignment;
void dfs1(int v) {
used[v] = true;
for (int u : adj[v]) {
if (!used[u])
dfs1(u);
}
order.push_back(v);
}
void dfs2(int v, int cl) {
comp[v] = cl;
for (int u : adj_t[v]) {
if (comp[u] == -1)
dfs2(u, cl);
}
}
bool solve_2SAT() {
order.clear();
used.assign(n, false);
// Search 1: Create Reverse Topological Order
for (int i = 0; i < n; ++i) {
if (!used[i])
dfs1(i);
}
comp.assign(n, -1);
// Search 2: Go through list of nodes in the reverse of the reverse topological order??
for (int i = 0, j = 0; i < n; ++i) {
int v = order[n - i - 1];
if (comp[v] == -1)
dfs2(v, j++);
}
// Solve the 2SAT Problem
assignment.assign(n / 2, false);
for (int i = 0; i < n; i += 2) {
if (comp[i] == comp[i + 1])
return false;
assignment[i / 2] = comp[i] > comp[i + 1];
}
return true;
}
void add_disjunction(int a, bool na, int b, bool nb) {
// na and nb signify whether a and b are to be negated
a = 2*a ^ na;
b = 2*b ^ nb;
int neg_a = a ^ 1;
int neg_b = b ^ 1;
adj[neg_a].push_back(b);
adj[neg_b].push_back(a);
adj_t[b].push_back(neg_a);
adj_t[a].push_back(neg_b);
}
Finding strongly-connected component
Learned this from CS341. There are 3 simple steps
- Run DFS on G, store the finish time of each vertex
- Run DFS on G^T, starting with vertices with highest finish time
- Each tree in the DFS forest we get from step 2 is a strongly connected component.
Step 2 essentially proceeds like a topological order.