CUDA Examples

Adding a vector, from the CUDA Course

#include <stdio.h>
#include <assert.h>
 
inline cudaError_t checkCuda(cudaError_t result)
{
  if (result != cudaSuccess) {
    fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
    assert(result == cudaSuccess);
  }
  return result;
}
 
void initWith(float num, float *a, int N)
{
  for(int i = 0; i < N; ++i)
  {
    a[i] = num;
  }
}
 
__global__
void addVectorsInto(float *result, float *a, float *b, int N)
{
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;
 
  for(int i = index; i < N; i += stride)
  {
    result[i] = a[i] + b[i];
  }
}
 
void checkElementsAre(float target, float *array, int N)
{
  for(int i = 0; i < N; i++)
  {
    if(array[i] != target)
    {
      printf("FAIL: array[%d] - %0.0f does not equal %0.0f\n", i, array[i], target);
      exit(1);
    }
  }
  printf("SUCCESS! All values added correctly.\n");
}
 
int main()
{
  const int N = 2<<20;
  size_t size = N * sizeof(float);
 
  float *a;
  float *b;
  float *c;
 
  checkCuda( cudaMallocManaged(&a, size) );
  checkCuda( cudaMallocManaged(&b, size) );
  checkCuda( cudaMallocManaged(&c, size) );
 
  initWith(3, a, N);
  initWith(4, b, N);
  initWith(0, c, N);
 
  size_t threadsPerBlock;
  size_t numberOfBlocks;
 
  threadsPerBlock = 256;
  numberOfBlocks = (N + threadsPerBlock - 1) / threadsPerBlock;
 
  addVectorsInto<<<numberOfBlocks, threadsPerBlock>>>(c, a, b, N);
 
  checkCuda( cudaGetLastError() );
  checkCuda( cudaDeviceSynchronize() );
 
  checkElementsAre(7, c, N);
 
  checkCuda( cudaFree(a) );
  checkCuda( cudaFree(b) );
  checkCuda( cudaFree(c) );
}

Some things that I missed:

  • Not determining the number of blocks using the the formula
  • Error handling message, using checkCuda which is an inline function

Matrix Multiplication

#include <stdio.h>
 
#define N  64
 
__global__ void matrixMulGPU( int * a, int * b, int * c )
{
  int val = 0;
 
  int row = blockIdx.x * blockDim.x + threadIdx.x;
  int col = blockIdx.y * blockDim.y + threadIdx.y;
 
  if (row < N && col < N)
  {
    for ( int k = 0; k < N; ++k )
      val += a[row * N + k] * b[k * N + col];
    c[row * N + col] = val;
  }
}
 
void matrixMulCPU( int * a, int * b, int * c )
{
  int val = 0;
 
  for( int row = 0; row < N; ++row )
    for( int col = 0; col < N; ++col )
    {
      val = 0;
      for ( int k = 0; k < N; ++k )
        val += a[row * N + k] * b[k * N + col];
      c[row * N + col] = val;
    }
}
 
int main()
{
  int *a, *b, *c_cpu, *c_gpu;
 
  int size = N * N * sizeof (int); // Number of bytes of an N x N matrix
 
  // Allocate memory
  cudaMallocManaged (&a, size);
  cudaMallocManaged (&b, size);
  cudaMallocManaged (&c_cpu, size);
  cudaMallocManaged (&c_gpu, size);
 
  // Initialize memory
  for( int row = 0; row < N; ++row )
    for( int col = 0; col < N; ++col )
    {
      a[row*N + col] = row;
      b[row*N + col] = col+2;
      c_cpu[row*N + col] = 0;
      c_gpu[row*N + col] = 0;
    }
 
  dim3 threads_per_block (16, 16, 1); // A 16 x 16 block threads
  dim3 number_of_blocks ((N / threads_per_block.x) + 1, (N / threads_per_block.y) + 1, 1);
 
  matrixMulGPU <<< number_of_blocks, threads_per_block >>> ( a, b, c_gpu );
 
  cudaDeviceSynchronize(); // Wait for the GPU to finish before proceeding
 
  // Call the CPU version to check our work
  matrixMulCPU( a, b, c_cpu );
 
  // Compare the two answers to make sure they are equal
  bool error = false;
  for( int row = 0; row < N && !error; ++row )
    for( int col = 0; col < N && !error; ++col )
      if (c_cpu[row * N + col] != c_gpu[row * N + col])
      {
        printf("FOUND ERROR at c[%d][%d]\n", row, col);
        error = true;
        break;
      }
  if (!error)
    printf("Success!\n");
 
  // Free all our allocated memory
  cudaFree(a); cudaFree(b);
  cudaFree( c_cpu ); cudaFree( c_gpu );
}

Heat Conduction

#include <stdio.h>
#include <math.h>
 
// Simple define to index into a 1D array from 2D space
#define I2D(num, c, r) ((r)*(num)+(c))
 
__global__
void step_kernel_mod(int ni, int nj, float fact, float* temp_in, float* temp_out)
{
  int i00, im10, ip10, i0m1, i0p1;
  float d2tdx2, d2tdy2;
 
  int j = blockIdx.x * blockDim.x + threadIdx.x;
  int i = blockIdx.y * blockDim.y + threadIdx.y;
 
  // loop over all points in domain (except boundary)
  if (j > 0 && i > 0 && j < nj-1 && i < ni-1) {
    // find indices into linear memory
    // for central point and neighbours
    i00 = I2D(ni, i, j);
    im10 = I2D(ni, i-1, j);
    ip10 = I2D(ni, i+1, j);
    i0m1 = I2D(ni, i, j-1);
    i0p1 = I2D(ni, i, j+1);
 
    // evaluate derivatives
    d2tdx2 = temp_in[im10]-2*temp_in[i00]+temp_in[ip10];
    d2tdy2 = temp_in[i0m1]-2*temp_in[i00]+temp_in[i0p1];
 
    // update temperatures
    temp_out[i00] = temp_in[i00]+fact*(d2tdx2 + d2tdy2);
  }
}
 
void step_kernel_ref(int ni, int nj, float fact, float* temp_in, float* temp_out)
{
  int i00, im10, ip10, i0m1, i0p1;
  float d2tdx2, d2tdy2;
 
 
  // loop over all points in domain (except boundary)
  for ( int j=1; j < nj-1; j++ ) {
    for ( int i=1; i < ni-1; i++ ) {
      // find indices into linear memory
      // for central point and neighbours
      i00 = I2D(ni, i, j);
      im10 = I2D(ni, i-1, j);
      ip10 = I2D(ni, i+1, j);
      i0m1 = I2D(ni, i, j-1);
      i0p1 = I2D(ni, i, j+1);
 
      // evaluate derivatives
      d2tdx2 = temp_in[im10]-2*temp_in[i00]+temp_in[ip10];
      d2tdy2 = temp_in[i0m1]-2*temp_in[i00]+temp_in[i0p1];
 
      // update temperatures
      temp_out[i00] = temp_in[i00]+fact*(d2tdx2 + d2tdy2);
    }
  }
}
 
int main()
{
  int istep;
  int nstep = 200; // number of time steps
 
  // Specify our 2D dimensions
  const int ni = 200;
  const int nj = 100;
  float tfac = 8.418e-5; // thermal diffusivity of silver
 
  float *temp1_ref, *temp2_ref, *temp1, *temp2, *temp_tmp;
 
  const int size = ni * nj * sizeof(float);
 
  temp1_ref = (float*)malloc(size);
  temp2_ref = (float*)malloc(size);
  cudaMallocManaged(&temp1, size);
  cudaMallocManaged(&temp2, size);
 
  // Initialize with random data
  for( int i = 0; i < ni*nj; ++i) {
    temp1_ref[i] = temp2_ref[i] = temp1[i] = temp2[i] = (float)rand()/(float)(RAND_MAX/100.0f);
  }
 
  // Execute the CPU-only reference version
  for (istep=0; istep < nstep; istep++) {
    step_kernel_ref(ni, nj, tfac, temp1_ref, temp2_ref);
 
    // swap the temperature pointers
    temp_tmp = temp1_ref;
    temp1_ref = temp2_ref;
    temp2_ref= temp_tmp;
  }
 
  dim3 tblocks(32, 16, 1);
  dim3 grid((nj/tblocks.x)+1, (ni/tblocks.y)+1, 1);
  cudaError_t ierrSync, ierrAsync;
 
  // Execute the modified version using same data
  for (istep=0; istep < nstep; istep++) {
    step_kernel_mod<<< grid, tblocks >>>(ni, nj, tfac, temp1, temp2);
 
    ierrSync = cudaGetLastError();
    ierrAsync = cudaDeviceSynchronize(); // Wait for the GPU to finish
    if (ierrSync != cudaSuccess) { printf("Sync error: %s\n", cudaGetErrorString(ierrSync)); }
    if (ierrAsync != cudaSuccess) { printf("Async error: %s\n", cudaGetErrorString(ierrAsync)); }
 
    // swap the temperature pointers
    temp_tmp = temp1;
    temp1 = temp2;
    temp2= temp_tmp;
  }
 
  float maxError = 0;
  // Output should always be stored in the temp1 and temp1_ref at this point
  for( int i = 0; i < ni*nj; ++i ) {
    if (abs(temp1[i]-temp1_ref[i]) > maxError) { maxError = abs(temp1[i]-temp1_ref[i]); }
  }
 
  // Check and see if our maxError is greater than an error bound
  if (maxError > 0.0005f)
    printf("Problem! The Max Error of %.5f is NOT within acceptable bounds.\n", maxError);
  else
    printf("The Max Error of %.5f is within acceptable bounds.\n", maxError);
 
  free( temp1_ref );
  free( temp2_ref );
  cudaFree( temp1 );
  cudaFree( temp2 );
 
  return 0;
}