CUDA Examples
Adding a vector, from the CUDA Course
#include <stdio.h>
#include <assert.h>
inline cudaError_t checkCuda(cudaError_t result)
{
if (result != cudaSuccess) {
fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
assert(result == cudaSuccess);
}
return result;
}
void initWith(float num, float *a, int N)
{
for(int i = 0; i < N; ++i)
{
a[i] = num;
}
}
__global__
void addVectorsInto(float *result, float *a, float *b, int N)
{
int index = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for(int i = index; i < N; i += stride)
{
result[i] = a[i] + b[i];
}
}
void checkElementsAre(float target, float *array, int N)
{
for(int i = 0; i < N; i++)
{
if(array[i] != target)
{
printf("FAIL: array[%d] - %0.0f does not equal %0.0f\n", i, array[i], target);
exit(1);
}
}
printf("SUCCESS! All values added correctly.\n");
}
int main()
{
const int N = 2<<20;
size_t size = N * sizeof(float);
float *a;
float *b;
float *c;
checkCuda( cudaMallocManaged(&a, size) );
checkCuda( cudaMallocManaged(&b, size) );
checkCuda( cudaMallocManaged(&c, size) );
initWith(3, a, N);
initWith(4, b, N);
initWith(0, c, N);
size_t threadsPerBlock;
size_t numberOfBlocks;
threadsPerBlock = 256;
numberOfBlocks = (N + threadsPerBlock - 1) / threadsPerBlock;
addVectorsInto<<<numberOfBlocks, threadsPerBlock>>>(c, a, b, N);
checkCuda( cudaGetLastError() );
checkCuda( cudaDeviceSynchronize() );
checkElementsAre(7, c, N);
checkCuda( cudaFree(a) );
checkCuda( cudaFree(b) );
checkCuda( cudaFree(c) );
}
Some things that I missed:
- Not determining the number of blocks using the the formula
- Error handling message, using
checkCuda
which is an inline function
Matrix Multiplication
#include <stdio.h>
#define N 64
__global__ void matrixMulGPU( int * a, int * b, int * c )
{
int val = 0;
int row = blockIdx.x * blockDim.x + threadIdx.x;
int col = blockIdx.y * blockDim.y + threadIdx.y;
if (row < N && col < N)
{
for ( int k = 0; k < N; ++k )
val += a[row * N + k] * b[k * N + col];
c[row * N + col] = val;
}
}
void matrixMulCPU( int * a, int * b, int * c )
{
int val = 0;
for( int row = 0; row < N; ++row )
for( int col = 0; col < N; ++col )
{
val = 0;
for ( int k = 0; k < N; ++k )
val += a[row * N + k] * b[k * N + col];
c[row * N + col] = val;
}
}
int main()
{
int *a, *b, *c_cpu, *c_gpu;
int size = N * N * sizeof (int); // Number of bytes of an N x N matrix
// Allocate memory
cudaMallocManaged (&a, size);
cudaMallocManaged (&b, size);
cudaMallocManaged (&c_cpu, size);
cudaMallocManaged (&c_gpu, size);
// Initialize memory
for( int row = 0; row < N; ++row )
for( int col = 0; col < N; ++col )
{
a[row*N + col] = row;
b[row*N + col] = col+2;
c_cpu[row*N + col] = 0;
c_gpu[row*N + col] = 0;
}
dim3 threads_per_block (16, 16, 1); // A 16 x 16 block threads
dim3 number_of_blocks ((N / threads_per_block.x) + 1, (N / threads_per_block.y) + 1, 1);
matrixMulGPU <<< number_of_blocks, threads_per_block >>> ( a, b, c_gpu );
cudaDeviceSynchronize(); // Wait for the GPU to finish before proceeding
// Call the CPU version to check our work
matrixMulCPU( a, b, c_cpu );
// Compare the two answers to make sure they are equal
bool error = false;
for( int row = 0; row < N && !error; ++row )
for( int col = 0; col < N && !error; ++col )
if (c_cpu[row * N + col] != c_gpu[row * N + col])
{
printf("FOUND ERROR at c[%d][%d]\n", row, col);
error = true;
break;
}
if (!error)
printf("Success!\n");
// Free all our allocated memory
cudaFree(a); cudaFree(b);
cudaFree( c_cpu ); cudaFree( c_gpu );
}
Heat Conduction
#include <stdio.h>
#include <math.h>
// Simple define to index into a 1D array from 2D space
#define I2D(num, c, r) ((r)*(num)+(c))
__global__
void step_kernel_mod(int ni, int nj, float fact, float* temp_in, float* temp_out)
{
int i00, im10, ip10, i0m1, i0p1;
float d2tdx2, d2tdy2;
int j = blockIdx.x * blockDim.x + threadIdx.x;
int i = blockIdx.y * blockDim.y + threadIdx.y;
// loop over all points in domain (except boundary)
if (j > 0 && i > 0 && j < nj-1 && i < ni-1) {
// find indices into linear memory
// for central point and neighbours
i00 = I2D(ni, i, j);
im10 = I2D(ni, i-1, j);
ip10 = I2D(ni, i+1, j);
i0m1 = I2D(ni, i, j-1);
i0p1 = I2D(ni, i, j+1);
// evaluate derivatives
d2tdx2 = temp_in[im10]-2*temp_in[i00]+temp_in[ip10];
d2tdy2 = temp_in[i0m1]-2*temp_in[i00]+temp_in[i0p1];
// update temperatures
temp_out[i00] = temp_in[i00]+fact*(d2tdx2 + d2tdy2);
}
}
void step_kernel_ref(int ni, int nj, float fact, float* temp_in, float* temp_out)
{
int i00, im10, ip10, i0m1, i0p1;
float d2tdx2, d2tdy2;
// loop over all points in domain (except boundary)
for ( int j=1; j < nj-1; j++ ) {
for ( int i=1; i < ni-1; i++ ) {
// find indices into linear memory
// for central point and neighbours
i00 = I2D(ni, i, j);
im10 = I2D(ni, i-1, j);
ip10 = I2D(ni, i+1, j);
i0m1 = I2D(ni, i, j-1);
i0p1 = I2D(ni, i, j+1);
// evaluate derivatives
d2tdx2 = temp_in[im10]-2*temp_in[i00]+temp_in[ip10];
d2tdy2 = temp_in[i0m1]-2*temp_in[i00]+temp_in[i0p1];
// update temperatures
temp_out[i00] = temp_in[i00]+fact*(d2tdx2 + d2tdy2);
}
}
}
int main()
{
int istep;
int nstep = 200; // number of time steps
// Specify our 2D dimensions
const int ni = 200;
const int nj = 100;
float tfac = 8.418e-5; // thermal diffusivity of silver
float *temp1_ref, *temp2_ref, *temp1, *temp2, *temp_tmp;
const int size = ni * nj * sizeof(float);
temp1_ref = (float*)malloc(size);
temp2_ref = (float*)malloc(size);
cudaMallocManaged(&temp1, size);
cudaMallocManaged(&temp2, size);
// Initialize with random data
for( int i = 0; i < ni*nj; ++i) {
temp1_ref[i] = temp2_ref[i] = temp1[i] = temp2[i] = (float)rand()/(float)(RAND_MAX/100.0f);
}
// Execute the CPU-only reference version
for (istep=0; istep < nstep; istep++) {
step_kernel_ref(ni, nj, tfac, temp1_ref, temp2_ref);
// swap the temperature pointers
temp_tmp = temp1_ref;
temp1_ref = temp2_ref;
temp2_ref= temp_tmp;
}
dim3 tblocks(32, 16, 1);
dim3 grid((nj/tblocks.x)+1, (ni/tblocks.y)+1, 1);
cudaError_t ierrSync, ierrAsync;
// Execute the modified version using same data
for (istep=0; istep < nstep; istep++) {
step_kernel_mod<<< grid, tblocks >>>(ni, nj, tfac, temp1, temp2);
ierrSync = cudaGetLastError();
ierrAsync = cudaDeviceSynchronize(); // Wait for the GPU to finish
if (ierrSync != cudaSuccess) { printf("Sync error: %s\n", cudaGetErrorString(ierrSync)); }
if (ierrAsync != cudaSuccess) { printf("Async error: %s\n", cudaGetErrorString(ierrAsync)); }
// swap the temperature pointers
temp_tmp = temp1;
temp1 = temp2;
temp2= temp_tmp;
}
float maxError = 0;
// Output should always be stored in the temp1 and temp1_ref at this point
for( int i = 0; i < ni*nj; ++i ) {
if (abs(temp1[i]-temp1_ref[i]) > maxError) { maxError = abs(temp1[i]-temp1_ref[i]); }
}
// Check and see if our maxError is greater than an error bound
if (maxError > 0.0005f)
printf("Problem! The Max Error of %.5f is NOT within acceptable bounds.\n", maxError);
else
printf("The Max Error of %.5f is within acceptable bounds.\n", maxError);
free( temp1_ref );
free( temp2_ref );
cudaFree( temp1 );
cudaFree( temp2 );
return 0;
}