Sachin
Met at the Comma hackathon.
Start with Camera Calibration using Zhang’s methods
- Know the basics about Kalman Filter, Cyrill Stachnis
Pre-req to ORB-SLAM: Fundamental Matrix and Homography Matrix Epipolar Geometry
Types of SLAM
- Sparse/ (Feature based)
- Sparse (but intensity based), called semi-direct method (SVO)
- Dense (ElasticFusion like https://www.roboticsproceedings.org/rss11/p01.pdf), COLMAP fits under this as well
- LSD-SLAM
We also say like indirect (feature-based) and direct SLAM (intensity based)
Tip from sachin: Focus on Sparse, because dense usually builds on top of sparse.
For robotics, 1-2cm tolerance, but in VR they need SUPER SUPER tight tolerance
https://github.com/MIT-SPARK/Kimera-VIO
- ORB-SLAM: track features
Projective 3-Point Algorithm (for marker tracking, infer camera position) https://www.youtube.com/watch?v=N1aCvzFll6Q&list=PLgnQpQtFTOGRYjqjdZxTEQPZuFHQa7O7Y&index=38&pp=iAQB&ab_channel=CyrillStachniss
So it seems that there are 2 playlists that are super helpful:
- Photogrammetry 1 and 2: https://www.youtube.com/playlist?list=PLgnQpQtFTOGRYjqjdZxTEQPZuFHQa7O7Y
- Mobile sensing 2: https://www.youtube.com/playlist?list=PLgnQpQtFTOGQh_J16IMwDlji18SWQ2PZ6
Actually Mobile sensing 1 has some pretty good videos too: https://www.youtube.com/playlist?list=PLgnQpQtFTOGQEn33QDVGJpiZLi-SlL7vA
- Includes MPC and Kalman Filter
Start with this: (understand backend optimization)
- https://www.youtube.com/watch?v=r2cyMQ5NB1o&pp=ygUUbGVhc3Qgc3F1YXJlcyBjeXJpbGw%3D
- https://www.youtube.com/watch?v=z60RbiY18I8&ab_channel=CyrillStachniss
For Cyrill (follow the order):
- Camera Calibration https://www.youtube.com/watch?v=uHApDqH-8UE&list=PLgnQpQtFTOGRYjqjdZxTEQPZuFHQa7O7Y&index=32&ab_channel=CyrillStachniss
- (optional, interested only) https://www.youtube.com/watch?v=QwU7iSJK8Rk&list=PLgnQpQtFTOGRYjqjdZxTEQPZuFHQa7O7Y&index=10&pp=iAQB&ab_channel=CyrillStachniss
- (this is different from Feature Matching, it’s just correlation between two images, not really needed) https://www.youtube.com/watch?v=5YAA7vS6kVU&list=PLgnQpQtFTOGRYjqjdZxTEQPZuFHQa7O7Y&index=12&ab_channel=CyrillStachniss https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html
- Feature Points (part 1 and 2)
- Homogeneous (quickly glance, see if you understand) https://www.youtube.com/watch?v=MQdm0Z_gNcw&list=PLgnQpQtFTOGRYjqjdZxTEQPZuFHQa7O7Y&index=30&ab_channel=CyrillStachniss
- DLT (super important): https://www.youtube.com/watch?v=3NcQbZu6xt8&list=PLgnQpQtFTOGRYjqjdZxTEQPZuFHQa7O7Y&index=35&ab_channel=CyrillStachniss
- Zhang’s method, https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html